Pre-operative prediction of histopathological growth patterns of colorectal cancer liver metastasis using MRI-based radiomic models

被引:1
|
作者
Song, Chunlin [1 ]
Li, Wenhui [2 ]
Cui, Jingjing [3 ]
Miao, Qi [1 ]
Liu, Yi [4 ]
Zhang, Zitian [1 ]
Nie, Siru [5 ]
Zhou, Meihong [6 ]
Chai, Ruimei [1 ]
机构
[1] China Med Univ, Hosp 1, Dept Radiol, 155 Nanjing St, Shenyang 110001, Peoples R China
[2] China Med Univ, Hosp 1, Inst Canc Res, Shenyang, Peoples R China
[3] United Imaging Intelligence Beijing Co Ltd, Dept Res & Dev, Beijing, Peoples R China
[4] China Med Univ, Canc Hosp, Dept Radiol, Shenyang, Peoples R China
[5] China Med Univ, Hosp 1, Dept Pathol, Shenyang, Peoples R China
[6] China Med Univ, Affiliated Hosp 4, Dept Radiol, Shenyang, Peoples R China
关键词
Colorectal liver metastasis; Histopathologic growth pattern; Magnetic resonance imaging; Radiomics; HEPATIC METASTASES; PERILESIONAL ENHANCEMENT;
D O I
10.1007/s00261-024-04290-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeHistopathological growth patterns (HGPs) of colorectal liver metastases (CRLMs) have prognostic value. However, the differentiation of HGPs relies on postoperative pathology. This study aimed to develop a magnetic resonance imaging (MRI)-based radiomic model to predict HGP pre-operatively, following the latest guidelines.MethodsThis retrospective study included 93 chemotherapy-na & iuml;ve patients with CRLMs who underwent contrast-enhanced liver MRI and a partial hepatectomy between 2014 and 2022. Radiomic features were extracted from the tumor zone (RTumor), a 2-mm outer ring (RT+2), a 2-mm inner ring (RT-2), and a combined ring (R2+2) on late arterial phase MRI images. Analysis of variance method (ANOVA) and least absolute shrinkage and selection operator (LASSO) algorithms were used for feature selection. Logistic regression with five-fold cross-validation was used for model construction. Receiver operating characteristic curves, calibrated curves, and decision curve analyses were used to assess model performance. DeLong tests were used to compare different models.ResultsTwenty-nine desmoplastic and sixty-four non-desmoplastic CRLMs were included. The radiomic models achieved area under the curve (AUC) values of 0.736, 0.906, 0.804, and 0.794 for RTumor, RT-2, RT+2, and R2+2, respectively, in the training cohorts. The AUC values were 0.713, 0.876, 0.785, and 0.777 for RTumor, RT-2, RT+2, and R2+2, respectively, in the validation cohort. RT-2 exhibited the best performance.ConclusionThe MRI-based radiomic models could predict HGPs in CRLMs pre-operatively.
引用
收藏
页码:4239 / 4248
页数:10
相关论文
共 50 条
  • [31] A cross-sectional survey investigating surgeon perceptions of pre-operative risk prediction models incorporating radiomic features
    Ewing, Jane N.
    Gala, Zachary
    Voytik, Malia
    Broach, Robyn B.
    Udupa, Jayaram K.
    Torigian, Drew A.
    Tong, Yubing
    Fischer, John P.
    HERNIA, 2025, 29 (01)
  • [32] MRI-based radiomic models for the preoperative prediction of extramural venous invasion in rectal cancer: A systematic review and meta-analysis
    Liang, Yingying
    Wei, Yaxuan
    Xu, Fan
    Wei, Xinhua
    CLINICAL IMAGING, 2024, 110
  • [33] Multiparametric MRI-based radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer
    Mohamed, Rania M.
    Panthi, Bikash
    Adrada, Beatriz E.
    Boge, Medine
    Candelaria, Rosalind P.
    Chen, Huiqin
    Guirguis, Mary S.
    Hunt, Kelly K.
    Huo, Lei
    Hwang, Ken-Pin
    Korkut, Anil
    Litton, Jennifer K.
    Moseley, Tanya W.
    Pashapoor, Sanaz
    Patel, Miral M.
    Reed, Brandy
    Scoggins, Marion E.
    Son, Jong Bum
    Thompson, Alastair
    Tripathy, Debu
    Valero, Vicente
    Wei, Peng
    White, Jason
    Whitman, Gary J.
    Xu, Zhan
    Yang, Wei
    Yam, Clinton
    Ma, Jingfei
    Rauch, Gaiane M.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Predicting Neoadjuvant Treatment Response in Rectal Cancer Using Machine Learning: Evaluation of MRI-Based Radiomic and Clinical Models
    Peterson, Kent J.
    Simpson, Matthew T.
    Drezdzon, Melissa K.
    Szabo, Aniko
    Ausman, Robin A.
    Nencka, Andrew S.
    Knechtges, Paul M.
    Peterson, Carrie Y.
    Ludwig, Kirk A.
    Ridolfi, Timothy J.
    JOURNAL OF GASTROINTESTINAL SURGERY, 2023, 27 (01) : 122 - 130
  • [35] Predicting Neoadjuvant Treatment Response in Rectal Cancer Using Machine Learning: Evaluation of MRI-Based Radiomic and Clinical Models
    Kent J. Peterson
    Matthew T. Simpson
    Melissa K. Drezdzon
    Aniko Szabo
    Robin A. Ausman
    Andrew S. Nencka
    Paul M. Knechtges
    Carrie Y. Peterson
    Kirk A. Ludwig
    Timothy J. Ridolfi
    Journal of Gastrointestinal Surgery, 2023, 27 : 122 - 130
  • [36] Prediction of post-operative pancreatic fistula in pancreaticoduodenectomy patients using pre-operative MRI: a pilot study
    Kim, Zisun
    Kim, Min Joo
    Kim, Jung Hoon
    Jin, So Young
    Kim, Yong Bae
    Seo, Daekwan
    Choi, Dongho
    Hur, Kyung Yul
    Kim, Jae Joon
    Lee, Min Hyuk
    Moon, Chul
    HPB, 2009, 11 (03) : 215 - 221
  • [37] ACCURATE AND GENERALIZABLE PRE-OPERATIVE PROGNOSTIC STRATIFICATION OF GLIOBLASTOMA PATIENTS USING INTEGRATIVE QUANTITATIVE RADIOMIC ANALYSIS OF CONVENTIONAL MRI
    Bakas, Spyridon
    Shukla, Gaurav
    Akbari, Hamed
    Sotiras, Aristeidis
    Erus, Guray
    Rozycki, Martin
    Alexander, Gregory S.
    Lombardo, Joseph
    Shinohara, Russell T.
    Davatzikos, Christos
    NEURO-ONCOLOGY, 2017, 19 : 151 - 151
  • [38] Impact of pre-operative PET Scans on survival after liver resection for metastatic colorectal cancer
    Chu, F.
    Riffat, F.
    Morris, D. L.
    ANNALS OF SURGICAL ONCOLOGY, 2007, 14 (02) : 58 - 58
  • [39] Histopathological Growth Patterns and Survival After Resection of Colorectal Liver Metastasis: An External Validation Study
    Hoppener, Diederik J.
    Galjart, Boris
    Nierop, Pieter M. H.
    Buisman, Florian E.
    van der Stok, Eric P.
    van den Braak, Robert R. J. Coebergh
    van Amerongen, Martin J.
    Balachandran, Vinod P.
    Jarnagin, William R.
    Kingham, T. Peter
    Doukas, Michail
    Shia, Jinru
    Nagtegaal, Iris D.
    Vermeulen, Peter B.
    Koerkamp, Bas Groot
    Grunhagen, Dirk J.
    de Wilt, Johannes H. W.
    D'Angelica, Michael, I
    Verhoef, Cornelis
    JNCI CANCER SPECTRUM, 2021, 5 (03)
  • [40] A Pre-operative Dynamic Contrast Enhanced MRI-Based Radiomics Models as Predictors of Treatment Response after Neoadjuvant Systemic Therapy in Triple Negative Breast Cancer Patients
    Mohamed, Rania M.
    Panthi, Bikash
    Adrada, Beatriz
    Candelaria, Rosalind
    Guirguis, Mary S.
    Yang, Wei
    Boge, Medine
    Patel, Miral
    Elshafeey, Nabil
    Pashapoor, Sanaz
    Zhou, Zijian
    Son, Jong Bum
    Hwang, Ken-Pin
    Le-Petross, H. T. Carisa
    Leung, Jessica
    Scoggins, Marion E.
    Whitman, Gary J.
    Xu, Zhan
    Lane, Deanna L.
    Moseley, Tanya
    Perez, Frances
    White, Jason
    Chen, Huiqin
    Sun, Jia
    Wei, Peng
    Litton, Jennifer K.
    Valero, Vicente
    Yam, Clinton
    Pagel, Mark
    Ma, Jingfei
    Rauch, Gaiane
    CANCER RESEARCH, 2023, 83 (05)