Towards robust automated math problem solving: a survey of statistical and deep learning approaches

被引:0
|
作者
Saraf, Amrutesh [1 ]
Kamat, Pooja [1 ]
Gite, Shilpa [2 ]
Kumar, Satish [2 ]
Kotecha, Ketan [2 ,3 ]
机构
[1] Symbiosis Int Univ, Symbiosis Inst Technol, Dept AI & Machine Learning, Near Lupin Res Pk, Pune 412115, Maharashtra, India
[2] Symbiosis Int Univ, Symbiosis Inst Technol, Symbiosis Ctr Appl Artificial Intelligence SCAAI, Near Lupin Res Pk, Pune 412115, Maharashtra, India
[3] Peoples Friendship Univ Russia, Miklukho Maklaya Str, Moscow 117198, Russia
关键词
Mathematical word problem solving; Geometrical word problem solving; Multimodal problem solving; Tabular word problem solving; Indic NLP; IndicXNLI;
D O I
10.1007/s12065-024-00957-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automated mathematical problem-solving represents a unique intersection of natural language processing (NLP) and mathematical reasoning, posing significant challenges in semantic comprehension and logical deduction. This survey paper explores the domain of mathematical word problems (MWPs), focusing on the nuanced integration of linguistic understanding and mathematical logic required for their resolution. Despite progress, the automated solution of MWPs through NLP techniques remains challenging. We present a comprehensive review of the latest datasets and computational models, focusing on those addressing geometrical, tabular, and multimodal problem types-areas not extensively covered in prior surveys. Our review extends beyond previous surveys by analyzing the solving of MWPs in languages such as Hindi and Arabic, areas less explored in existing research. We critically review the latest datasets and computational models designed for MWPs, highlighting the scarcity of resources that cater to the complexity of problems in Hindi, Arabic, and similar languages. This gap underscores the need for comprehensive datasets that reflect the diversity of MWPs in these languages and for models capable of navigating the linguistic nuances inherent in non-English and non-Chinese contexts. Our analysis points to the limitations of current approaches, including their focus on specific data formats and limited generalizability across different mathematical contexts. Furthermore, our critical analysis identifies prevailing limitations within current methodologies, including over-reliance on specific data formats and a lack of generalizability across diverse mathematical contexts. In response, we propose a research agenda to develop sophisticated models that understand and reason across a broader spectrum of problem types and languages and create datasets that capture the real-world diversity of MWPs in Hindi, Arabic, and beyond. This paper sets a direction for future research to advance NLP-driven mathematical problem-solving toward technically adept and universally applicable models across linguistic boundaries, thereby making strides toward truly global NLP applications in education and beyond.
引用
收藏
页码:3113 / 3150
页数:38
相关论文
共 50 条
  • [31] Towards an automated data cleaning with deep learning in CRESST
    G. Angloher
    S. Banik
    D. Bartolot
    G. Benato
    A. Bento
    A. Bertolini
    R. Breier
    C. Bucci
    J. Burkhart
    L. Canonica
    A. D’Addabbo
    S. Di Lorenzo
    L. Einfalt
    A. Erb
    F. v. Feilitzsch
    N. Ferreiro Iachellini
    S. Fichtinger
    D. Fuchs
    A. Fuss
    A. Garai
    V. M. Ghete
    S. Gerster
    P. Gorla
    P. V. Guillaumon
    S. Gupta
    D. Hauff
    M. Ješkovský
    J. Jochum
    M. Kaznacheeva
    A. Kinast
    H. Kluck
    H. Kraus
    M. Lackner
    A. Langenkämper
    M. Mancuso
    L. Marini
    L. Meyer
    V. Mokina
    A. Nilima
    M. Olmi
    T. Ortmann
    C. Pagliarone
    L. Pattavina
    F. Petricca
    W. Potzel
    P. Povinec
    F. Pröbst
    F. Pucci
    F. Reindl
    D. Rizvanovic
    The European Physical Journal Plus, 138
  • [32] Towards an automated data cleaning with deep learning in CRESST
    Angloher, G.
    Banik, S.
    Bartolot, D.
    Benato, G.
    Bento, A.
    Bertolini, A.
    Breier, R.
    Bucci, C.
    Burkhart, J.
    Canonica, L.
    D'Addabbo, A.
    Di Lorenzo, S.
    Einfalt, L.
    Erb, A.
    Feilitzsch, F. V.
    Iachellini, N. Ferreiro
    Fichtinger, S.
    Fuchs, D.
    Fuss, A.
    Garai, A.
    Ghete, V. M.
    Gerster, S.
    Gorla, P.
    Guillaumon, P. V.
    Gupta, S.
    Hauff, D.
    Jeskovsky, M.
    Jochum, J.
    Kaznacheeva, M.
    Kinast, A.
    Kluck, H.
    Kraus, H.
    Lackner, M.
    Langenkaemper, A.
    Mancuso, M.
    Marini, L.
    Meyer, L.
    Mokina, V.
    Nilima, A.
    Olmi, M.
    Ortmann, T.
    Pagliarone, C.
    Pattavina, L.
    Petricca, F.
    Potzel, W.
    Povinec, P.
    Proebst, F.
    Pucci, F.
    Reindl, F.
    Rizvanovic, D.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (01):
  • [33] Review of deep learning approaches in solving rock fragmentation problems
    Ronkin, Mikhail, V
    Akimova, Elena N.
    Misilov, Vladimir E.
    AIMS MATHEMATICS, 2023, 8 (10): : 23900 - 23940
  • [34] Supporting Math Problem Solving Coaching for Young Students: A Case for Weak Learning Companion
    Chen, Lujie
    ARTIFICIAL INTELLIGENCE IN EDUCATION, PT II, 2018, 10948 : 493 - 497
  • [35] Narrative-supported math problem solving in digital game-based learning
    Dai, Chih-Pu
    Ke, Fengfeng
    Pan, Yanjun
    ETR&D-EDUCATIONAL TECHNOLOGY RESEARCH AND DEVELOPMENT, 2022, 70 (04): : 1261 - 1281
  • [36] Data Augmentation with In-Context Learning and Comparative Evaluation in Math Word Problem Solving
    Yigit G.
    Amasyali M.F.
    SN Computer Science, 5 (5)
  • [37] Narrative-supported math problem solving in digital game-based learning
    Chih-Pu Dai
    Fengfeng Ke
    Yanjun Pan
    Educational technology research and development, 2022, 70 : 1261 - 1281
  • [38] Deep Learning Approaches towards Book Covers Classification
    Buczkowski, Przemyslaw
    Sobkowicz, Antoni
    Kozlowski, Marek
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS (ICPRAM 2018), 2018, : 309 - 316
  • [39] Approaches and Controllers to Solving the Contention Problem for Packet Switching Networks: A Survey
    Kharroubi, Fouad
    Chen, Lin
    Yu, Jianjun
    INTERNET OF THINGS-BK, 2012, 312 : 172 - +
  • [40] Deep versus compiled knowledge approaches to diagnostic problem-solving
    Chandrasekaran, B
    Mittal, S
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES, 1999, 51 (02) : 357 - 368