Regulation oxygen vacancy in Ba 0.9 La 0.1 Co 0.7 Fe 0.2 Nb 0.1 O 3-s cathode with improved hydration activity for proton ceramic fuel cells

被引:3
|
作者
Zhao, Zhongyi [1 ]
Zhou, Xinghong [1 ]
Zheng, Hesheng [1 ]
Xie, Caiyue [1 ]
Wang, Yifei [1 ]
Li, Haowei [1 ]
Wang, Yijian [1 ]
Ding, Xifeng [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Protonic ceramic fuel cells; Oxygen electrode; A-site deficiency perovskite; Stability; HIGH-PERFORMANCE; DOUBLE PEROVSKITE; LAYERED PEROVSKITES; RELAXATION-TIMES; OXIDE; MICROSTRUCTURE; OPTIMIZATION; DURABILITY;
D O I
10.1016/j.ijhydene.2024.05.395
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton ceramic fuel cells (PCFCs) are gaining attention due to their high energy conversion efficiency. However, the development of PCFCs is hindered by the lack of efficient and robust cathode materials. This article proposes a solution by introducing certain cationic deficiency into the Ba0.9La0.1Co0.7Fe0.2Nb0.1O3-s (BLCFN) cathode matrix, which results in abundance of oxygen vacancies as well as enhanced proton defects. Consequently, the catalytic activity and hydration activity of the BLCFN oxygen electrode are improved during the reduction reaction process. Specifically, the polarization impedance (Rp) of the (Ba0.9La0.1)0.95Co0.7Fe0.2Nb0.1O3-s (BL95CFN) decreases by 20% compared to the pristine BLCFN, reaching 0.12 D center dot cm2 at 700 degrees C in air. The Rp of BL95CFN decreases by 12% in a steam environment of 20 vol%. This enhancement is attributed to the higher concentration of oxygen vacancies, which leads to an improved proton diffusion rate and hydration performance. The peak power density of the anode-supported BL95CFN | BZCYYb | BZCYYb-NiO single cell reaches 641 mW cm-2 at 700 degrees C, and the performance of this single cell remains stable for nearly 100 h. These findings highlight the vital role of adjusting oxygen vacancy and proton diffusion, providing a feasible strategy for improving the performance and stability of PCFC cathode materials.
引用
收藏
页码:940 / 948
页数:9
相关论文
共 50 条
  • [31] Metal-Supported Solid Oxide Fuel Cell with La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ Cathode
    Zhu, Tenglong
    Yang, Zhibin
    Han, Minfang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) : F122 - F125
  • [32] Performance evaluation of La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ as both anode and cathode material in solid oxide fuel cells
    Yang, Zhibin
    Xu, Na
    Han, Minfang
    Chen, Fanglin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (14) : 7402 - 7406
  • [33] Enhanced La0.6Sr0.4Co0.2Fe0.8O3-δ-based cathode performance by modification of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte surface in protonic ceramic fuel cells
    Shimada, Hiroyuki
    Yamaguchi, Yuki
    Sumi, Hirofumi
    Mizutani, Yasunobu
    CERAMICS INTERNATIONAL, 2021, 47 (11) : 16358 - 16362
  • [34] Characterization of Ba0.5Sr0.5Co0.7In0.1Fe0.2O3-δ as the Cathode Material for Proton-conducting SOFCs
    Tao, Z.
    Hou, G.
    Zhang, Q.
    Sang, S.
    Xing, F.
    Wang, B.
    FUEL CELLS, 2016, 16 (02) : 263 - 266
  • [35] Ba0.9Co0.7Fe0.2Nb0.1O3–δ–Gd0.1Ce0.9O2–δ双相复合透氧膜的氧渗透性能
    李雷雷
    杨志宾
    韩敏芳
    硅酸盐学报, 2017, 45 (06) : 778 - 784
  • [36] Preparation and Performance of Cathode Materials Ba1-xSrxCo0.7Fe0.2Nb0.1O3-δ for Intermediate-temperature Solid Oxide Fuel Cells
    Han Fei
    Liu Xiao-Mei
    Bi Hai-Lin
    Zhang Li-Jun
    Pei Li
    Su Wen-Hui
    JOURNAL OF INORGANIC MATERIALS, 2013, 28 (11) : 1223 - 1227
  • [37] A novel cobalt-free Ba0.5Sr0.5Fe0.9Mo0.1O3-δ-BaZr0.1Ce0.7Y0.2O3-α composite cathode for solid oxide fuel cells
    Yang, Zhijie
    Wang, Nenbao
    Xiao, Jia
    Zhang, Hongmin
    Zhang, Feng
    Ma, Guilin
    Zhou, Zhufa
    JOURNAL OF POWER SOURCES, 2012, 204 : 89 - 93
  • [38] Characterization of SrCo0.7Fe0.2Nb0.1O3-δ cathode materials for intermediate-temperature solid oxide fuel cells
    Lu, Shiquan
    Yu, Bo
    Meng, Xiangwei
    Zhao, Xiaoyu
    Ji, Yuan
    Fu, Chengwei
    Zhang, Yongjun
    Yang, Lili
    Fan, Hougang
    Yang, Jinghai
    JOURNAL OF POWER SOURCES, 2015, 273 : 244 - 254
  • [39] Oxygen permeation through dense La0.1Sr0.9Co0.8Fe0.2O3-δ perovskite membranes: Catalytic effect of porous La0.1Sr0.9Co0.8Fe0.2O3-δ layers
    Jeon, Sang-Yun
    Im, Ha-Ni
    Singh, Bhupendra
    Choi, Mihwa
    Yoo, Young-Sung
    Hwang, Jin-Ha
    Song, Sun-Ju
    CERAMICS INTERNATIONAL, 2015, 41 (06) : 7446 - 7452
  • [40] Preparation and Electrochemical Performance of a Novel Perovskite Anode La0.9Ca0.1Fe0.9Nb0.1O3-δ for Solid Oxide Fuel Cells
    Zhao Xiao-Hong
    Wang Yong
    Liu Li-Min
    Li Bin
    JOURNAL OF INORGANIC MATERIALS, 2017, 32 (11) : 1188 - 1194