On the Domain Generalization Capabilities of Interactive Segmentation Methods

被引:0
|
作者
Marchesoni-Acland, Franco [1 ]
Magne, Tanguy [1 ]
Rekbi, Faycal [1 ]
Facciolo, Gabriele [1 ]
机构
[1] Univ Paris Saclay, Ctr Borelli, ENS Paris Saclay, Gif Sur Yvette, France
来源
IMAGE PROCESSING ON LINE | 2024年 / 14卷
关键词
interactive-image-segmentation; out-of-distribution; domain-adaptation;
D O I
10.5201/ipol.2024.499
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Interactive image segmentation (IIS) methods are usually trained over segmentation datasets containing natural images. They are also usually evaluated over natural images. However, the most common use case is the annotation of new images from a different domain. Yet, the performance of IIS methods on a different domain is seldom reported. In this work, we evaluate a state-of-the-art IIS method trained with natural images over an aerial image dataset. Its performance is compared to the performances the method achieves when being trained/finetuned with aerial images. The comparison reveals that there is a big domain generalization gap.
引用
收藏
页码:25 / 40
页数:16
相关论文
共 50 条
  • [21] Domain Generalization for Retinal Vessel Segmentation with Vector Field Transformer
    Hu, Dewei
    Li, Hao
    Liu, Han
    Oguz, Ipek
    [J]. INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 552 - 563
  • [22] Improving Domain Generalization in Segmentation Models with Neural Style Transfer
    Kline, Timothy L.
    [J]. 2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 1324 - 1328
  • [24] AADG: Automatic Augmentation for Domain Generalization on Retinal Image Segmentation
    Lyu, Junyan
    Zhang, Yiqi
    Huang, Yijin
    Lin, Li
    Cheng, Pujin
    Tang, Xiaoying
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (12) : 3699 - 3711
  • [25] The generalization capabilities of ARTMAP
    Heileman, GL
    Georgiopoulos, M
    Healy, MJ
    Verzi, SJ
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1068 - 1071
  • [26] Adaptive Methods for Real-World Domain Generalization
    Dubey, Abhimanyu
    Ramanathan, Vignesh
    Pentland, Alex
    Mahajan, Dhruv
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14335 - 14344
  • [27] A generalization of segmentation methods of quantiles and modes to the case of several images
    Kuleev R.F.
    Fofanov V.B.
    [J]. Pattern Recognition and Image Analysis, 2008, 18 (4) : 666 - 670
  • [28] ULTRASOUND INTERACTIVE SEGMENTATION WITH TENSOR-GRAPH METHODS
    Rieke, Nicola
    Hennersperger, Christoph
    Mateus, Diana
    Navab, Nassir
    [J]. 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 690 - 693
  • [29] Domain Generalization in Medical Image Segmentation via Meta-Learners
    Oliveira, Hugo
    Cesar, Roberto M., Jr.
    Gama, Pedro H. T.
    dos Santos, Jefersson A.
    [J]. 2022 35TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2022), 2022, : 288 - 293
  • [30] Unseen Domain Generalization for Prostate MRI Segmentation via Disentangled Representations
    Lu, Ye
    Xing, Xiaohan
    Meng, Max Q. -H.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 1986 - 1991