Clustering-Guided Twin Contrastive Learning for Endomicroscopy Image Classification

被引:0
|
作者
Zhou, Jingjun [1 ]
Dong, Xiangjiang [2 ]
Liu, Qian [1 ,3 ]
机构
[1] Hainan Univ, Sch Biomed Engn, Haikou 570228, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Hainan Univ, Sch Biomed Engn, Key Lab Biomed Engn Hainan Prov, Haikou 570228, Peoples R China
基金
中国国家自然科学基金;
关键词
Clustering; contrastive learning; image classification and gastrointestinal; probe-based confocal laser endomicroscopy (pCLE); CONFOCAL LASER ENDOMICROSCOPY; SAFETY;
D O I
10.1109/JBHI.2024.3366223
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Learning better representations is essential in medical image analysis for computer-aided diagnosis. However, learning discriminative semantic features is a major challenge due to the lack of large-scale well-annotated datasets. Thus, how can we learn a well-structured categorizable embedding space in limited-scale and unlabeled datasets? In this paper, we proposed a novel clustering-guided twin-contrastive learning framework (CTCL) that learns the discriminative representations of probe-based confocal laser endomicroscopy (pCLE) images for gastrointestinal (GI) tumor classification. Compared with traditional contrastive learning, in which only two randomly augmented views of the same instance are considered, the proposed CTCL aligns more semantically related and class-consistent samples by clustering, which improved intra-class tightness and inter-class variability to produce more informative representations. Furthermore, based on the inherent properties of CLE (geometric invariance and intrinsic noise), we proposed to regard CLE images with any angle rotation and CLE images with different noises as the same instance, respectively, for increased variability and diversity of samples. By optimizing CTCL in an end-to-end expectation-maximization framework, comprehensive experimental results demonstrated that CTCL-based visual representations achieved competitive performance on each downstream task as well as more robustness and transferability compared with existing state-of-the-art SSL and supervised methods. Notably, CTCL achieved 75.60%/78.45% and 64.12%/77.37% top-1 accuracy on the linear evaluation protocol and few-shot classification downstream tasks, respectively, which outperformed the previous best results by 1.27%/1.63% and 0.5%/3%, respectively. The proposed method holds great potential to assist pathologists in achieving an automated, fast, and high-precision diagnosis of GI tumors and accurately determining different stages of tumor development based on CLE images.
引用
收藏
页码:2879 / 2890
页数:12
相关论文
共 50 条
  • [31] Mask-Enhanced Contrastive Learning for Hyperspectral Image Classification
    Cao, Xianghai
    Yu, Jiayu
    Xu, Ruijie
    Wei, Jiaxuan
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [32] PROTOTYPE GOVERNED CONTRASTIVE LEARNING FOR ROBUST IMAGE CLASSIFICATION IN HISTOPATHOLOGY
    Tinaikar, Aashay
    Raipuria, Geetank
    Singhal, Nitin
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [33] Cross-Modality Contrastive Learning for Hyperspectral Image Classification
    Hang, Renlong
    Qian, Xuwei
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] SPATIAL-SPECTRAL CONTRASTIVE LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Guan, Peiyan
    Lam, Edmund Y.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1372 - 1375
  • [35] Domain-Collaborative Contrastive Learning for Hyperspectral Image Classification
    Luo, Haiyang
    Qiao, Xueyi
    Xu, Yongming
    Zhong, Shengwei
    Gong, Chen
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 1
  • [36] Deep image clustering by fusing contrastive learning and neighbor relation mining
    Xu, Chaoyang
    Lin, Renjie
    Cai, Jinyu
    Wang, Shiping
    KNOWLEDGE-BASED SYSTEMS, 2022, 238
  • [37] Decentralized learning for medical image classification with prototypical contrastive network
    Cao, Zhantao
    Shi, Yuanbing
    Zhang, Shuli
    Chen, Huanan
    Liu, Weide
    Yue, Guanghui
    Lin, Huazhen
    MEDICAL PHYSICS, 2025,
  • [38] Classification Based on Hyperspectral Image and LiDAR Data with Contrastive Learning
    Li Shihan
    Hua Haiyang
    Zhang Hao
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (22)
  • [39] Enhancing Whole Slide Image Classification with Discriminative and Contrastive Learning
    Liang, Peixian
    Zheng, Hao
    Li, Hongming
    Gong, Yuxin
    Bakas, Spyridon
    Fan, Yong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT IV, 2024, 15004 : 102 - 112
  • [40] Adversarial Domain Alignment With Contrastive Learning for Hyperspectral Image Classification
    Liu, Fang
    Gao, Wenfei
    Liu, Jia
    Tang, Xu
    Xiao, Liang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61