Relational generalized iterated function systems

被引:0
|
作者
Abraham, Izabella [1 ]
Miculescu, Radu [1 ]
Mihail, Alexandru [2 ]
机构
[1] Transilvania Univ Brasov, Fac Math & Comp Sci, Iuliu Maniu St 50, Brasov 500091, Romania
[2] Univ Bucharest, Fac Math & Comp Sci, Academiei St 14, Bucharest 010014, Romania
关键词
Equivalence relations; Relational generalized iterated function systems; Attractors; Weakly Picard operators; ATTRACTORS;
D O I
10.1016/j.chaos.2024.114823
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a wider class of generalized iterated function systems, called relational generalized iterated function systems. More precisely, the classical contraction condition for functions defined on product spaces is weakened by means of an equivalence relation. In particular, if we consider the total equivalence relation, we recover the classical generalized iterated function systems. Our main result states that each compact subset of the underlying metric space generates, via a sequence of iterates, a fixed point of the associated fractal operator, called an attractor of the system. We also establish a structure result for the attractors and a theorem concerning the continuous dependence of the attractor on the associated compact set. Ultimately, we provide some examples which illustrate our main results.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] ATTRACTORS OF ITERATED FUNCTION SYSTEMS
    DUVALL, PF
    HUSCH, LS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 116 (01) : 279 - 284
  • [42] Ends of iterated function systems
    Conner, Gregory R.
    Hojka, Wolfram
    MATHEMATISCHE ZEITSCHRIFT, 2014, 277 (3-4) : 1073 - 1083
  • [43] RECURRENT ITERATED FUNCTION SYSTEMS
    BARNSLEY, MF
    ELTON, JH
    HARDIN, DP
    CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) : 3 - 31
  • [44] Cyclic iterated function systems
    R. Pasupathi
    A. K. B. Chand
    M. A. Navascués
    Journal of Fixed Point Theory and Applications, 2020, 22
  • [45] Quantum iterated function systems
    Lozinski, A
    Zyczkowski, K
    Slomczynski, W
    PHYSICAL REVIEW E, 2003, 68 (04):
  • [46] Cyclic iterated function systems
    Pasupathi, R.
    Chand, A. K. B.
    Navascues, M. A.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2020, 22 (03)
  • [47] Sensitivity of iterated function systems
    Ghane, F. H.
    Rezaali, E.
    Sarizadeh, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (02) : 493 - 503
  • [48] MOBIUS ITERATED FUNCTION SYSTEMS
    Vince, Andrew
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (01) : 491 - 509
  • [49] On quantum iterated function systems
    Jadczyk, A
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2004, 2 (03): : 492 - 503
  • [50] Tiling iterated function systems
    Barnsley, Louisa F.
    Barnsley, Michael F.
    Vince, Andrew
    CHAOS SOLITONS & FRACTALS, 2024, 182