Real-Time Object Tracking with YOLOv5 and Recurrent Network

被引:0
|
作者
Mohammed, Al Ameri [1 ]
Memon, Qurban [1 ]
机构
[1] UAE Univ, ECE Dept, Al Ain, U Arab Emirates
关键词
Object Tracking; Real Time Object Tracking; You only look once version 5 (YOLOv5); Recurrent network;
D O I
10.1109/ICECC63398.2024.00013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advancement in object tracking involves the integration of feature-based approaches with contemporary deep learning methodologies. The primary difficulties in object tracking pertain to the establishment of reliable data associations across consecutive frames. These challenges are particularly pronounced in scenarios involving surveillance and autonomous navigation. The you only look once version 5 small (YOLOv5s) detector trained on the VisDrone2019 dataset results in a notable reduction in latency. The proposed methodology demonstrates superior performance compared to baseline approach, with F1 score of 93.31 for Intersection over Union (IOU) values greater than 0.5, while achieving a frame rate of 167.147 frames per second within a mere 0.0024 seconds. Experimental results are presented.
引用
下载
收藏
页码:28 / 32
页数:5
相关论文
共 50 条
  • [41] YOLO-MSFR: real-time natural disaster victim detection based on improved YOLOv5 network
    Hao, Shuai
    Zhao, Qiulin
    Ma, Xu
    Wu, Yingqi
    Gao, Shan
    Yang, Chenlu
    He, Tian
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (01)
  • [42] Toward real-time fracture detection on image logs using deep convolutional neural network YOLOv5
    Olya, Behnia Azizzadeh Mehmandost
    Mohebian, Reza
    Bagheri, Hassan
    Hezaveh, Arzhan Mahdavi
    Mohammadi, Abolfazl Khan
    INTERPRETATION-A JOURNAL OF SUBSURFACE CHARACTERIZATION, 2024, 12 (02): : SB9 - SB18
  • [43] YOLO-MSFR: real-time natural disaster victim detection based on improved YOLOv5 network
    Shuai Hao
    Qiulin Zhao
    Xu Ma
    Yingqi Wu
    Shan Gao
    Chenlu Yang
    Tian He
    Journal of Real-Time Image Processing, 2024, 21
  • [44] Real Time Lung Cancer Classification with YOLOv5
    Makhdoomi S.M.
    Khosla C.
    Pande S.D.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2023, 9 (01)
  • [45] Real⁃time dense small object detection algorithm for UAV based on improved YOLOv5
    Feng Z.
    Xie Z.
    Bao Z.
    Chen K.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2023, 44 (07):
  • [46] Hierarchical correlation siamese network for real-time object tracking
    Meng, Yu
    Deng, Zaixu
    Zhao, Kun
    Xu, Yan
    Liu, Hao
    APPLIED INTELLIGENCE, 2021, 51 (06) : 3202 - 3211
  • [47] Real-Time Object Tracking Algorithm Based on Siamese Network
    Zhao, Wenjun
    Deng, Miaolei
    Cheng, Cong
    Zhang, Dexian
    APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [48] Accurate Positioning Siamese Network for Real-Time Object Tracking
    Zhou, Lijun
    Yao, Xuwen
    Zhang, Jianlin
    IEEE ACCESS, 2019, 7 : 84209 - 84216
  • [49] A Siamese-Detection Network for Real-Time Object Tracking
    Deng, Yang
    Xie, Ning
    Yang, Yang
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1669 - 1674
  • [50] Correction to: Real-time object tracking in the wild with Siamese network
    Feng Han
    Shaokui Jiang
    Jianmin Wu
    Baile Xu
    Jian Zhao
    Furao Shen
    Multimedia Tools and Applications, 2023, 82 (16) : 24345 - 24345