Exploratory Analysis of Distributional Data Using the Quantile Method

被引:0
|
作者
Ichino, Manabu [1 ]
机构
[1] Tokyo Denki Univ, Sch Sci & Engn, Hatoyama, Saitama 3500394, Japan
来源
APPLIEDMATH | 2024年 / 4卷 / 01期
关键词
quantile vector; bin rectangle; concept size; compactness; monotone property; LINEAR-REGRESSION MODEL;
D O I
10.3390/appliedmath4010014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The quantile method transforms each complex object described by different histogram values to a common number of quantile vectors. This paper retraces the authors' research, including a principal component analysis, unsupervised feature selection using hierarchical conceptual clustering, and lookup table regression model. The purpose is to show that this research is essentially based on the monotone property of quantile vectors and works cooperatively in the exploratory analysis of the given distributional data.
引用
收藏
页码:261 / 288
页数:28
相关论文
共 50 条
  • [1] Quantile Function on Scalar Regression Analysis for Distributional Data
    Yang, Hojin
    Baladandayuthapani, Veerabhadran
    Rao, Arvind U. K.
    Morris, Jeffrey S.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2020, 115 (529) : 90 - 106
  • [2] A multilevel analysis of real estate valuation using distributional and quantile regression
    Razen, Alexander
    Brunauer, Wolfgang
    Klein, Nadja
    Kneib, Thomas
    Lang, Stefan
    Umlauf, Nikolaus
    [J]. STATISTICAL MODELLING, 2023, 23 (5-6) : 525 - 539
  • [3] Hierarchical conceptual clustering based on quantile method for identifying microscopic details in distributional data
    Kadri Umbleja
    Manabu Ichino
    Hiroyuki Yaguchi
    [J]. Advances in Data Analysis and Classification, 2021, 15 : 407 - 436
  • [4] Hierarchical conceptual clustering based on quantile method for identifying microscopic details in distributional data
    Umbleja, Kadri
    Ichino, Manabu
    Yaguchi, Hiroyuki
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (02) : 407 - 436
  • [5] Distributional Semantics in Aphasia: An Exploratory Analysis Using Word Embeddings
    Bello Lepe, Sebastian
    [J]. REVISTA SIGNOS, 2022, 55 (110): : 1029 - 1044
  • [6] Multiscale Exploratory Analysis of Regression Quantiles Using Quantile SiZer
    Park, Cheolwoo
    Lee, Thomas C. M.
    Hannig, Jan
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2010, 19 (03) : 497 - 513
  • [7] QUANTILE ANALYSIS - A METHOD FOR CHARACTERIZING DATA DISTRIBUTIONS
    LODDER, RA
    HIEFTJE, GM
    [J]. APPLIED SPECTROSCOPY, 1988, 42 (08) : 1512 - 1520
  • [8] Landuse data analysis with exploratory data analysis method
    Gao, Wenxiu
    Zhu, Junjie
    Hou, Jianguang
    [J]. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/ Geomatics and Information Science of Wuhan University, 2009, 34 (12): : 1502 - 1506
  • [9] EVALUATING THE DISTRIBUTIONAL EFFECTS OF FISCAL POLICIES USING QUANTILE REGRESSIONS
    Casalone, Giorgia
    Sonedda, Daniela
    [J]. REVIEW OF INCOME AND WEALTH, 2013, 59 (02) : 305 - 325
  • [10] The distributional effect of climate change on agriculture: Evidence from a Ricardian quantile analysis of Brazilian census data
    DePaula, Guilherme
    [J]. JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT, 2020, 104