Multiscale Exploratory Analysis of Regression Quantiles Using Quantile SiZer

被引:13
|
作者
Park, Cheolwoo [1 ]
Lee, Thomas C. M. [2 ]
Hannig, Jan [3 ]
机构
[1] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[2] Univ Calif Davis, Dept Stat, Davis, CA 95616 USA
[3] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会;
关键词
Effective sample size; Multiple slope testing; Nonparametric quantile regression; Robust variance estimation; Running regression quantile; SiZer; SCALE-SPACE; TIME-SERIES; NONPARAMETRIC-ESTIMATION; CONDITIONAL QUANTILES; FEATURES; KERNEL; VISUALIZATION; ESTIMATORS; INFERENCE; DENSITY;
D O I
10.1198/jcgs.2010.09120
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The SiZer methodology proposed by Chaudhuri and Marron (1999) is a valuable tool for conducting exploratory data analysis. Since its inception different versions of SiZer have been proposed in the literature. Most of these SiZer variants are targeting the mean structure of the data, and are incapable of providing any information about the quantile composition of the data. To till this need, this article proposes a quantile version of SiZer for the regression setting. By inspecting the SiZer maps produced by this new SiZer, real quantile structures hidden in a dataset can be more effectively revealed, while at the same time spurious features can be filtered out. The utility of this quantile SiZer is illustrated via applications to both real data and simulated examples. This article has supplementary material online.
引用
收藏
页码:497 / 513
页数:17
相关论文
共 50 条
  • [1] On elliptical quantiles in the quantile regression setup
    Hlubinka, Daniel
    Siman, Miroslav
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 : 163 - 171
  • [2] Nonparametric estimation of conditional quantiles using quantile regression trees
    Chaudhuri, P
    Loh, WY
    [J]. BERNOULLI, 2002, 8 (05) : 561 - 576
  • [3] On generalized elliptical quantiles in the nonlinear quantile regression setup
    Hlubinka, Daniel
    Siman, Miroslav
    [J]. TEST, 2015, 24 (02) : 249 - 264
  • [4] ESTIMATION FOR EXTREME CONDITIONAL QUANTILES OF FUNCTIONAL QUANTILE REGRESSION
    Zhu, Hanbing
    Zhang, Riquan
    Li, Yehua
    Yao, Weixin
    [J]. STATISTICA SINICA, 2022, 32 : 1767 - 1787
  • [5] On generalized elliptical quantiles in the nonlinear quantile regression setup
    Daniel Hlubinka
    Miroslav Šiman
    [J]. TEST, 2015, 24 : 249 - 264
  • [6] ESTIMATION OF QUANTILE DENSITY-FUNCTION BASED ON REGRESSION QUANTILES
    DODGE, Y
    JURECKOVA, J
    [J]. STATISTICS & PROBABILITY LETTERS, 1995, 23 (01) : 73 - 78
  • [7] THE DETERMINATION OF A LEAST QUANTILE OF SQUARES REGRESSION LINE FOR ALL QUANTILES
    CARRIZOSA, E
    PLASTRIA, F
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1995, 20 (05) : 467 - 479
  • [8] Using quantile regression for duration analysis
    Fitzenberger B.
    Wilke R.A.
    [J]. Allgemeines Statistisches Archiv, 2006, 90 (1): : 105 - 120
  • [9] SiZer analysis for the comparison of regression curves
    Park, Cheolwoo
    Kang, Kee-Hoon
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (08) : 3954 - 3970
  • [10] Quantification of SMR and SDA in aquatic animals using quantiles and non-linear quantile regression
    Chabot, D.
    Claireaux, G.
    [J]. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2008, 150 (03): : S99 - S99