On the tractability of sampling from the Potts model at low temperatures via random-cluster dynamics

被引:1
|
作者
Blanca, Antonio [1 ]
Gheissari, Reza [2 ]
机构
[1] Penn State Univ, Dept CSE, University Pk, PA 16802 USA
[2] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
Swendsen-Wang dynamics; Potts model; Random-cluster model; Low-temperatures; Mixing times; Disagreement percolation; SWENDSEN-WANG; GLAUBER DYNAMICS; ALGORITHMS; GRAPHS; TIME;
D O I
10.1007/s00440-024-01289-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sampling from the q-state ferromagnetic Potts model is a fundamental question in statistical physics, probability theory, and theoretical computer science. On general graphs, this problem may be computationally hard, and this hardness holds at arbitrarily low temperatures. At the same time, in recent years, there has been significant progress showing the existence of low-temperature sampling algorithms in various specific families of graphs. Our aim in this paper is to understand the minimal structural properties of general graphs that enable polynomial-time sampling from the q-state ferromagnetic Potts model at low temperatures. We study this problem from the perspective of random-cluster dynamics. These are non-local Markov chains that have long been believed to converge rapidly to equilibrium at low temperatures in many graphs. However, the hardness of the sampling problem likely indicates that this is not even the case for all bounded degree graphs. Our results demonstrate that a key graph property behind fast or slow convergence time for these dynamics is whether the independent edge-percolation on the graph admits a strongly supercritical phase. By this, we mean that at large p<1, it has a large linear-sized component, and the graph complement of that component is comprised of only small components. Specifically, we prove that such a condition implies fast mixing of the random-cluster Glauber and Swendsen-Wang dynamics on two general families of bounded-degree graphs: (a) graphs of at most stretched-exponential volume growth and (b) locally treelike graphs. In the other direction, we show that, even among graphs in those families, these Markov chains can converge exponentially slowly at arbitrarily low temperatures if the edge-percolation condition does not hold. In the process, we develop new tools for the analysis of non-local Markov chains, including a framework to bound the speed of disagreement propagation in the presence of long-range correlations, an understanding of spatial mixing properties on trees with random boundary conditions, and an analysis of burn-in phases at low temperatures.
引用
收藏
页码:1121 / 1168
页数:48
相关论文
共 50 条
  • [31] Random-Cluster Representation for the Blume–Capel Model
    M. B. Bouabci
    C. E. I. Carneiro
    Journal of Statistical Physics, 2000, 100 : 805 - 827
  • [32] RANDOM-CLUSTER MODEL .2. PERCOLATION MODEL
    FORTUIN, CM
    PHYSICA, 1972, 58 (03): : 393 - &
  • [33] Information percolation and cutoff for the random-cluster model
    Ganguly, Shirshendu
    Seo, Insuk
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (03) : 770 - 822
  • [34] Random-Cluster Representation of the Blume–Capel Model
    B. T. Graham
    G. R. Grimmett
    Journal of Statistical Physics, 2006, 125 : 283 - 316
  • [35] DISCONTINUITY OF THE PHASE TRANSITION FOR THE PLANAR RANDOM-CLUSTER AND POTTS MODELS WITH q &gt; 4
    Duminil-Copin, Hugo
    Gagnebin, Maxime
    Harel, Matan
    Manolescu, Ioan
    Tassion, Vincent
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2021, 54 (06): : 1363 - 1413
  • [36] Continuity of the Phase Transition for Planar Random-Cluster and Potts Models with 1 ≤ q ≤ 4
    Duminil-Copin, Hugo
    Sidoravicius, Vladas
    Tassion, Vincent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (01) : 47 - 107
  • [37] ELECTRONIC-PROPERTIES IN THE INTERACTION RANDOM-CLUSTER MODEL
    CHEN, XS
    ZHAO, JJ
    SUN, QA
    WANG, GH
    PHYSICS LETTERS A, 1995, 204 (02) : 169 - 173
  • [38] RENORMALIZATION OF CROSSING PROBABILITIES IN THE PLANAR RANDOM-CLUSTER MODEL
    Duminil-Copin, Hugo
    Tassion, Vincent
    MOSCOW MATHEMATICAL JOURNAL, 2020, 20 (04) : 711 - 740
  • [39] Random-cluster representation of the Ashkin-Teller model
    Pfister, CE
    Velenik, Y
    JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (5-6) : 1295 - 1331
  • [40] Random-cluster representation for the Blume-Capel model
    Bouabci, MB
    Carneiro, CEI
    JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (5-6) : 805 - 827