On the general fractal dimensions of hyperspace of compact sets

被引:3
|
作者
Cheng, Dandan [1 ]
Li, Zhiming [2 ]
Selmi, Bilel [3 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Taiyuan 030602, Peoples R China
[2] Northwest Univ, Sch Math, Xian 710127, Shannxi, Peoples R China
[3] Univ Monastir, Fac Sci Monastir, Dept Math, Anal Probabil & Fractals Lab LR18ES17, Monastir 5000, Tunisia
关键词
General fractal measures and dimensions; Hyperspace; HAUSDORFF DIMENSION;
D O I
10.1016/j.fss.2024.108998
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider a separable metric space ( X, c ) , and let ( . f ( X ) , c ) denote the space of non-empty compact subsets of X equipped with the Hausdorff metric. This paper aims to introduce and investigate the concepts of two general fractal dimensions and general dimensions within the framework of ( . f ( X ) , c ) . In particular, we explore a relationship between the general fractal dimensions of a set Z of a self-similar sequence space and their counterparts in the space of compact subsets . f ( Z ) .
引用
收藏
页数:14
相关论文
共 50 条
  • [31] The fractal dimensions of the level sets of the generalized iterated Brownian motion
    Chang-qing Tong
    Zheng-yan Lin
    Jing Zheng
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 597 - 602
  • [32] Estimates of the fractal and hausdorff dimensions of sets invariant under multimappings
    V. S. Mel'nik
    [J]. Mathematical Notes, 1998, 63 : 190 - 196
  • [33] The Fractal Dimensions of the Level Sets of the Generalized Iterated Brownian Motion
    Chang-qing TONG
    Zheng-yan LIN
    Jing ZHENG
    [J]. Acta Mathematicae Applicatae Sinica, 2013, (03) : 597 - 602
  • [34] INTEGRATED WAVELETS ON FRACTAL SETS .2. THE GENERALIZED DIMENSIONS
    GHEZ, JM
    VAIENTI, S
    [J]. NONLINEARITY, 1992, 5 (03) : 791 - 804
  • [35] The bounds and the dimensions of the general M and J sets
    Liu, XD
    He, XQ
    Zhu, WY
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2000, 8 (02) : 215 - 218
  • [36] Investigations of smooth functions and analytic sets using fractal dimensions
    D'Aniello, E
    [J]. BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2004, 7B (03): : 637 - 646
  • [37] New Type of Fractal Functions for the General Data Sets
    Manuj Verma
    Amit Priyadarshi
    [J]. Acta Applicandae Mathematicae, 2023, 187
  • [38] New Type of Fractal Functions for the General Data Sets
    Verma, Manuj
    Priyadarshi, Amit
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2023, 187 (01)
  • [39] On the 1-prevalent continuous functions on compact sets and dimensions
    Liu, Jia
    Tan, Bo
    Wu, Jun
    [J]. NONLINEARITY, 2023, 36 (07) : 3734 - 3750
  • [40] Unbiased estimation of multi-fractal dimensions of finite data sets
    Univ of Southern Queensland, Toowoomba
    [J]. Phys A Stat Theor Phys, 3-4 (867-878):