A deep neural network for predicting soil texture using airborne radiometric data

被引:0
|
作者
Maino, Andrea [1 ,2 ]
Alberi, Matteo [1 ,2 ]
Barbagli, Alessio [3 ]
Chiarelli, Enrico [1 ,2 ]
Colonna, Tommaso [3 ]
Franceschi, Michele [1 ,2 ]
Gallorini, Fabio [1 ,3 ]
Guastaldi, Enrico [1 ,3 ]
Lopane, Nicola [1 ,2 ,3 ]
Mantovani, Fabio [1 ,2 ]
Petrone, Dario [1 ,3 ]
Pierini, Silvio [3 ]
Raptis, Kassandra Giulia Cristina [1 ,2 ]
Strati, Virginia [1 ,2 ]
Xhixha, Gerti [4 ]
机构
[1] Univ Ferrara, Dept Phys & Earth Sci, I-44122 Ferrara, Italy
[2] INFN Ferrara Sect, I-44122 Ferrara, Italy
[3] GeoExplorer Impresa Sociale Srl, I-52100 Arezzo, Italy
[4] Univ Tirana, Fac Nat Sci, Dept Phys, Blv Zogu 1, Tirana 1001, Albania
关键词
Deep neural network; Hyperparameters optimization; Airborne gamma-ray spectroscopy; Soil texture mapping; Potassium; Thorium; GAMMA-RAY SPECTROSCOPY; CLASSIFICATION; SPECTROMETRY;
D O I
10.1016/j.radphyschem.2024.111767
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The ternary nature of soil texture, defined by its proportions of clay, silt, and sand, makes it challenging to predict through linear regression models from other soil attributes and auxiliary variables. The most promising results in this field have been recently achieved by Machine Learning methods which are able to derive nonlinear, non -site -specific models to predict soil texture. In this paper we present a method of constructing a pair of Deep Neural Network (DNN) algorithms that can predict clay and sand soil contents from Airborne Gamma Ray Spectrometry data of K and Th ground abundances. We tested the algorithm ' s hyperparameters through various configurations to optimize the DNNs ' performance, effectively avoiding underfitting and overfitting of the models. This led to the creation of a highresolution 20 m x 20 m soil texture map from dense AGRS data, significantly refining the previous map ' s granularity. The application of the obtained DNN models to unseen sites can be supported by future training on additional textural classes.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Imaging subsurface orebodies with airborne electromagnetic data using a recurrent neural network
    Bang, Minkyu
    Oh, Seokmin
    Noh, Kyubo
    Seol, Soon Jee
    Byun, Joongmoo
    GEOPHYSICS, 2021, 86 (06) : E407 - E419
  • [32] Automatic Detection of UXO from Airborne Magnetic Data Using a Neural Network
    Ahmed Salem
    Keisuke Ushijima
    T. Jeffrey Gamey
    Dhananjay Ravat
    Subsurface Sensing Technologies and Applications, 2001, 2 (3): : 191 - 213
  • [33] Dark web data classification using deep neural network
    Kumar, P. J. Sathish
    Rubia, J. Jency
    Anitha, R.
    Degadwala, Sheshang
    INTERNATIONAL JOURNAL OF ELECTRONIC SECURITY AND DIGITAL FORENSICS, 2024, 16 (02) : 202 - 212
  • [34] Automated data labeling in radiotherapy using a deep neural network
    Franco, P. G.
    Ambroa, E.
    Valverde-Pascual, I.
    Perez-Alija, J.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S997 - S998
  • [35] ECC Data Hide - Using Steganoraphy and Deep Neural Network
    Vennila, V.
    Poomani, L., I
    Thaaranya, S.
    REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2021, 11 (02): : 396 - 405
  • [36] Modeling Hourly Soil Temperature Using Deep BiLSTM Neural Network
    Li, Cong
    Zhang, Yaonan
    Ren, Xupeng
    ALGORITHMS, 2020, 13 (07)
  • [37] Classification of Multispectral Airborne LiDAR Data Using Geometric and Radiometric Information
    Morsy, Salem
    Shaker, Ahmed
    El-Rabbany, Ahmed
    GEOMATICS, 2022, 2 (03): : 370 - 389
  • [38] Spatial statistics to estimate peat thickness using airborne radiometric data
    Keaney, A.
    McKinley, J.
    Graham, C.
    Robinson, M.
    Ruffell, A.
    SPATIAL STATISTICS, 2013, 5 : 3 - 24
  • [39] AIRBORNE RADIOMETRIC DATA - A TOOL FOR RECONNAISSANCE GEOLOGICAL MAPPING USING A GIS
    GRAHAM, DF
    BONHAMCARTER, GF
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 1993, 59 (08): : 1243 - 1249
  • [40] Predicting airborne chloride deposition in marine bridge structures using an artificial neural network model
    Jeon, Dongho
    Jung, Jahe
    Park, Jisun
    Min, Jiyoung
    Oh, Jae Eun
    Moon, Juhyuk
    Lee, Jong-Suk
    Yoon, Seyoon
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 337