Numerical simulation and experimental investigation of temperature distribution during the wire arc additive manufacturing (WAAM) process

被引:3
|
作者
Gupta, Deepak Kumar [1 ]
Mulik, Rahul S. [1 ]
机构
[1] Indian Inst Technol, Dept Mech & Ind Engn, Roorkee 247667, Uttarakhand, India
关键词
Wire arc manufacturing; Numerical simulation; Deposition rate; Substrate; Interlayer temperature; Thermal gradients; Heat accumulation; COLUMNAR;
D O I
10.1007/s40964-024-00647-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Wire arc additive manufacturing (WAAM) has emerged as a notable technology in the past decade, characterized by its cost-effectiveness and high deposition rates for intricate part manufacturing, surpassing traditional processes. In this investigation, numerical simulations were executed to analyze the temperature distribution when constructing a mild steel rectangular wall on a substrate of the same material, employing the WAAM process as the WAAM-built parts are more susceptible to errors by adverse thermal gradients. Experiments were conducted to build mild steel rectangular walls and temperature data were recorded to validate the numerical outcomes. The experimental and numerical results were found to be in good agreement with less than 10% average error. The Interlayer temperature is observed to rise with the addition of each layer, attributed to the accumulation of heat. Substantial thermal gradients are identified in the lower layers in contrast to the upper layers following the formation of the top layers, owing to the gradual buildup of heat in these lower layers.
引用
收藏
页码:631 / 645
页数:15
相关论文
共 50 条
  • [21] Experimental Investigation on Mechanical Properties of Part Fabricated by Wire Arc Additive Manufacturing Process
    Kumar, Vivek P.
    Soundrapandian, E.
    Joseph, Jenin A.
    Kanagarajan, E.
    JOURNAL OF ENGINEERING RESEARCH, 2021, 9
  • [22] The Current State of Research of Wire Arc Additive Manufacturing (WAAM): A Review
    Treutler, Kai
    Wesling, Volker
    APPLIED SCIENCES-BASEL, 2021, 11 (18):
  • [23] Challenges associated with the wire arc additive manufacturing (WAAM) of aluminum alloys
    Thapliyal, Shivraman
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11)
  • [24] Ultracold-Wire and arc additive manufacturing (UC-WAAM)
    Rodrigues, Tiago A.
    Duarte, Valdemar R.
    Miranda, R. M.
    Santos, Telmo G.
    Oliveira, J. P.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2021, 296 (296)
  • [25] Wire arc additive manufacturing (WAAM) of nanotreated aluminum alloy 6061
    Chi, Yitian
    Murali, Narayanan
    Liu, Jingke
    Liese, Maximilian
    Li, Xiaochun
    RAPID PROTOTYPING JOURNAL, 2023, 29 (07) : 1341 - 1349
  • [26] Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)
    Cam, Gurel
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 77 - 85
  • [27] Wire Arc Additive Manufacturing (WAAM) and microstructural analysis of Magnesium parts
    University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels
    4600, Austria
    不详
    61669, Czech Republic
    不详
    5282, Austria
    eJ. Nondestruct. Test., 2023, 3
  • [28] Hot forging wire and arc additive manufacturing (HF-WAAM)
    Duarte, Valdemar R.
    Rodrigues, Tiago A.
    Schell, N.
    Miranda, R. M.
    Oliveira, J. P.
    Santos, Telmo G.
    ADDITIVE MANUFACTURING, 2020, 35
  • [29] Forming accuracy improvement in wire arc additive manufacturing (WAAM): a review
    Li, Yiwen
    Dong, Zhihai
    Miao, Junyan
    Liu, Huifang
    Babkin, Aleksandr
    Chang, Yunlong
    RAPID PROTOTYPING JOURNAL, 2023, 29 (04) : 673 - 686
  • [30] Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM)
    Cam, Gurel
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 : 77 - 85