Linear Query Approximation Algorithms for Non-monotone Submodular Maximization under Knapsack Constraint

被引:0
|
作者
Pham, Canh V. [1 ]
Tran, Tan D. [2 ]
Ha, Dung T. K. [2 ]
Thai, My T. [3 ]
机构
[1] Phenikaa Univ, ORLab, Fac Comp Sci, Hanoi, Vietnam
[2] VNU Univ Engn & Technol, Fac Informat Technol, Hanoi, Vietnam
[3] Univ Florida, Dept Comp & Informat Sci & Engn, Gainesville, FL 32611 USA
来源
PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023 | 2023年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work, for the first time, introduces two constant factor approximation algorithms with linear query complexity for non-monotone submodular maximization over a ground set of size n subject to a knapsack constraint, DLA and RLA. DLA is a deterministic algorithm that provides an approximation factor of 6+epsilon while RLA is a randomized algorithm with an approximation factor of 4+epsilon. Both run in O(n log(1/epsilon)/epsilon) query complexity. The key idea to obtain a constant approximation ratio with linear query lies in: (1) dividing the ground set into two appropriate subsets to find the near-optimal solution over these subsets with linear queries, and (2) combining a threshold greedy with properties of two disjoint sets or a random selection process to improve solution quality. In addition to the theoretical analysis, we have evaluated our proposed solutions with three applications: Revenue Maximization, Image Summarization, and Maximum Weighted Cut, showing that our algorithms not only return comparative results to state-of-the-art algorithms but also require significantly fewer queries.
引用
收藏
页码:4127 / 4135
页数:9
相关论文
共 50 条
  • [31] Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Chien-Chung Huang
    Naonori Kakimura
    Yuichi Yoshida
    Algorithmica, 2020, 82 : 1006 - 1032
  • [32] Group fairness in non-monotone submodular maximization
    Jing Yuan
    Shaojie Tang
    Journal of Combinatorial Optimization, 2023, 45
  • [33] Group fairness in non-monotone submodular maximization
    Yuan, Jing
    Tang, Shaojie
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2023, 45 (03)
  • [34] Maximization of Monotone Non-submodular Functions with a Knapsack Constraint over the Integer Lattice
    Tan, Jingjing
    Wang, Fengmin
    Zhang, Xiaoqing
    Zhou, Yang
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2021, 2021, 13135 : 364 - 373
  • [35] Maximizing a monotone non-submodular function under a knapsack constraint
    Zhenning Zhang
    Bin Liu
    Yishui Wang
    Dachuan Xu
    Dongmei Zhang
    Journal of Combinatorial Optimization, 2022, 43 : 1125 - 1148
  • [36] Maximizing a monotone non-submodular function under a knapsack constraint
    Zhang, Zhenning
    Liu, Bin
    Wang, Yishui
    Xu, Dachuan
    Zhang, Dongmei
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 43 (05) : 1125 - 1148
  • [37] Improved Streaming Algorithms for Maximizing Monotone Submodular Functions Under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    ALGORITHMS AND DATA STRUCTURES, WADS 2019, 2019, 11646 : 438 - 451
  • [38] Improved Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint
    Huang, Chien-Chung
    Kakimura, Naonori
    ALGORITHMICA, 2021, 83 (03) : 879 - 902
  • [39] Improved Streaming Algorithms for Maximizing Monotone Submodular Functions under a Knapsack Constraint
    Chien-Chung Huang
    Naonori Kakimura
    Algorithmica, 2021, 83 : 879 - 902
  • [40] Fast Streaming Algorithms for k-Submodular Maximization under a Knapsack Constraint
    Pham, Canh V.
    Ha, Dung K. T.
    Hoang, Huan X.
    Tran, Tan D.
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 260 - 269