Robust Integrative Analysis via Quantile Regression with and

被引:1
|
作者
Zeng, Hao [1 ]
Wan, Chuang [2 ]
Zhong, Wei [3 ,4 ]
Liu, Tuo [3 ,4 ]
机构
[1] Xiamen Univ, Paula & Gregory Chow Inst Studies Econ, Xiamen 361005, Fujian, Peoples R China
[2] Jinan Univ, Sch Econ, Dept Stat, Guangzhou 510632, Peoples R China
[3] Xiamen Univ, WISE, MOE Key Lab Econometr, Xiamen 361005, Fujian, Peoples R China
[4] Xiamen Univ, Dept Stat & Data Sci SOE, Xiamen 361005, Fujian, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
Homogeneity; Integrative analysis; Quantile regression; Robustness; Sparsity; NONCONCAVE PENALIZED LIKELIHOOD; TUNING PARAMETER SELECTION; CLIPPED ABSOLUTE DEVIATION; VARIABLE SELECTION; DIVERGING NUMBER; MODEL SELECTION; CRITERION; LASSO;
D O I
10.1016/j.jspi.2024.106196
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Integrative analysis plays a critical role in integrating heterogeneous data from multiple datasets to provide a comprehensive view of the overall data features. However, in multiple datasets, outliers and heavy -tailed data can render least squares estimation unreliable. In response, we propose a Robust Integrative Analysis via Quantile Regression (RIAQ) that accounts for homogeneity and sparsity in multiple datasets. The RIAQ approach is not only able to identify latent homogeneous coefficient structures but also recover the sparsity of high -dimensional covariates via double penalty terms. The integration of sample information across multiple datasets improves estimation efficiency, while a sparse model improves model interpretability. Furthermore, quantile regression allows the detection of subgroup structures under different quantile levels, providing a comprehensive picture of the relationship between response and high -dimensional covariates. We develop an efficient alternating direction method of multipliers (ADMM) algorithm to solve the optimization problem and study its convergence. We also derive the parameter selection consistency of the modified Bayesian information criterion. Numerical studies demonstrate that our proposed estimator has satisfactory finite -sample performance, especially in heavy -tailed cases.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] On multivariate quantile regression analysis
    Chavas, Jean-Paul
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (03): : 365 - 384
  • [22] ROBUST TEST BASED ON NONLINEAR REGRESSION QUANTILE ESTIMATORS
    Choi, Seung Hoe
    Kim, Kyung Joong
    Lee, Myung Sook
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 20 (01): : 145 - 159
  • [23] Quantile regression for robust bank efficiency score estimation
    Behr, Andreas
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 200 (02) : 568 - 581
  • [24] Robust Multiplicative Scatter Correction Using Quantile Regression
    Hemmateenejad, Bahram
    Mobaraki, Nabiollah
    Baumann, Knut
    JOURNAL OF CHEMOMETRICS, 2024, 38 (11)
  • [25] Robust penalized quantile regression estimation for panel data
    Lamarche, Carlos
    JOURNAL OF ECONOMETRICS, 2010, 157 (02) : 396 - 408
  • [26] Robust scalar-on-function partial quantile regression
    Beyaztas, Ufuk
    Tez, Mujgan
    Lin Shang, Han
    JOURNAL OF APPLIED STATISTICS, 2024, 51 (07) : 1359 - 1377
  • [27] Instrumental variable quantile regression: A robust inference approach
    Chernozhukov, Victor
    Hansen, Christian
    JOURNAL OF ECONOMETRICS, 2008, 142 (01) : 379 - 398
  • [28] Robust and efficient estimation with weighted composite quantile regression
    Jiang, Xuejun
    Li, Jingzhi
    Xia, Tian
    Yan, Wanfeng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 457 : 413 - 423
  • [29] Model-robust designs for nonlinear quantile regression
    Selvaratnam, Selvakkadunko
    Kong, Linglong
    Wiens, Douglas P.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2021, 30 (01) : 221 - 232
  • [30] Quantile regression shrinkage and selection via the Lqsso
    Daneshvar, Alireza
    Golalizadeh, Mousa
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2024, 34 (03) : 297 - 322