A Distributed Theory for Contactless Interconnects at Terahertz Frequencies

被引:2
|
作者
Jungwirth, Nicholas R. [1 ]
Bosworth, Bryan T. [1 ]
Hagerstrom, Aaron M. [1 ]
Papac, Meagan C. [1 ]
Marksz, Eric J. [1 ]
Cheron, Jerome [1 ]
Smith, Kassiopeia [1 ]
Stelson, Angela C. [1 ]
Feldman, Ari [1 ]
Williams, Dylan F. [1 ]
Long, Christian J. [1 ]
Orloff, Nathan D. [1 ]
机构
[1] NIST, Boulder, CO 80305 USA
来源
关键词
Integrated circuit interconnections; Solid modeling; Conductors; Computational modeling; Analytical models; Coplanar waveguides; Predictive models; Analytical model; broadside-coupled coplanar waveguide (CPW); bumpless; distributed circuit model; heterogeneous integration; millimeter-wave technology; COPLANAR WAVE-GUIDES; SIGE AMPLIFIER; GAIN;
D O I
10.1109/LMWT.2024.3412592
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We test a multimodal analytical model for distributed contactless interconnects by comparing it to 3-D full-wave simulations. In comparison to 3-D simulations, the model offers insight into how the interconnect works and reduces the computational cost of estimating and optimizing the interconnect's performance. The model predicts the performance of four distributed contactless interconnects and finds good agreement between with 3-D simulations up to 1 THz. All the interconnects have less than 1-dB insertion loss in their first pass bands, highlighting the opportunity offered by contactless interconnects.
引用
收藏
页码:975 / 978
页数:4
相关论文
共 50 条
  • [1] Micromachining for Advanced Terahertz: Interconnects and Packaging Techniques at Terahertz Frequencies
    Alonso-del Pino, Maria
    Jung-Kubiak, Cecile
    Reck, Theodore
    Lee, Choonsup
    Chattopadhyay, Goutam
    IEEE MICROWAVE MAGAZINE, 2020, 21 (01) : 18 - 34
  • [2] Contactless Testing of Circuit Interconnects
    Renbi, Abdelghani
    Delsing, Jerker
    JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2015, 31 (03): : 229 - 253
  • [3] Contactless Testing of Circuit Interconnects
    Abdelghani Renbi
    Jerker Delsing
    Journal of Electronic Testing, 2015, 31 : 229 - 253
  • [4] Innovations in Terahertz Interconnects
    Holloway, Jack W.
    Dogiamis, Georgios C.
    Han, Ruonan
    IEEE MICROWAVE MAGAZINE, 2020, 21 (01) : 35 - 50
  • [5] Contactless photoconductive terahertz generation
    Zhang, H.
    Wahlstrand, J. K.
    Choi, S. B.
    Cundiff, S. T.
    OPTICS LETTERS, 2011, 36 (02) : 223 - 225
  • [6] Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz
    Jentzsch, A
    Heinrich, W
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2001, 49 (05) : 871 - 878
  • [7] Mode locking at terahertz frequencies using a distributed Bragg reflector laser with a sampled grating
    Hou, Lianping
    Haji, Mohsin
    Marsh, John H.
    OPTICS LETTERS, 2013, 38 (07) : 1113 - 1115
  • [8] Terahertz wireless interconnects for cryogenic electronics
    Wang, Jinchen
    Han, Ruonan
    NATURE ELECTRONICS, 2025,
  • [9] Nanoscale phononic interconnects in THz frequencies
    Sgouros, Aris P.
    Neupane, Mahesh R.
    Sigalas, M. M.
    Aravantinos-Zafiris, N.
    Lake, Roger K.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (42) : 23355 - 23364
  • [10] A MEMS CONTACTLESS ROTATING TERAHERTZ WAVEGUIDE SWITCH
    Rahiminejad, Sofia
    Van Berkel, Sven
    Lin, Robin H.
    Jung-Kubiak, Cecile
    Chattopadhyay, Goutam
    Rais-Zadeh, Mina
    2022 IEEE 35TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS CONFERENCE (MEMS), 2022, : 223 - 226