Experimental and numerical investigations on the intermittent heat transfer performance of phase change material (PCM)-based heat sink with triply periodic minimal surfaces (TPMS)

被引:0
|
作者
Wang, Jiabin [1 ]
Pu, Wenhao [1 ]
Zhao, Haisheng [2 ]
Qiao, Long [1 ]
Song, Nanxin [1 ]
Yue, Chen [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Key Lab Thermal Management & Energy Utilizat Aircr, Minist Ind & Informat Technol, Nanjing 210016, Jiangsu, Peoples R China
[2] HFYC Zhenjiang Addit Mfg Co Ltd, Zhenjiang 212132, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase change material; Triply periodic minimal surfaces; Intermittent; Temperature control; Heat sink; THERMAL-ENERGY STORAGE; SOLID GALLIUM; METAL; PCM; ENHANCEMENT; MANAGEMENT; APPLICABILITY; CHUNKS;
D O I
10.1016/j.applthermaleng.2024.123864
中图分类号
O414.1 [热力学];
学科分类号
摘要
The excessive heat generated during the operation of electronic components leads to significant temperature increases, posing a significant risk to their service life. For the problem of efficient thermal management of electronic devices in confined spaces experiencing high heat flow, a scheme using triply periodic minimal surfaces and a phase change material-based active-passive cooling heat sink is proposed to control the temperature of electronic equipment. The apparent heat capacity method is employed to simulate the intermittent process of the phase change material-based heat sink. The optimization based on Box-Behnken Design and Nondominated Sorting Genetic Algorithm II is analyzed to obtain an improved triply periodic minimal surface structure. The effect of thermal performance (including base temperature, liquid fraction, and Grashof number) of an intermittent heat sink based on an improved structure is discussed. Visualization and temperature testing platforms are established. Through visualization experiments, the internal temperature and liquid fraction distribution of the heat sink are obtained, and the simulation results are in good agreement with the test results. The results show that the base temperature, liquid fraction, and Grashof number achieve a steady periodic variation during the intermittent process. Specifically, the base temperature remains stable in the range of 314 K to 340 K, the liquid fraction stabilizes between 0.8 and 1.0, and the Grashof number stabilizes between 100 and 1000. At the heating power of 30 W or below, the base temperature of the heat sink exhibits a steady periodic variation. At the heating power of 40 W, the maximum base temperature of the heat sink exceeds 370 K.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Experimental and numerical investigations of heat transfer and phase change characteristics of cemented paste backfill with PCM
    Wang, Mei
    Liu, Lang
    Zhang, Xiao-Yan
    Chen, Liu
    Wang, Shi-Qi
    Jia, Yu-Hang
    APPLIED THERMAL ENGINEERING, 2019, 150 : 121 - 131
  • [22] Experimental and numerical study on temperature control performance of phase change material heat sink
    Li, Wei
    Liu, Shuoya
    Zhang, Kaiyu
    Zhang, Yong
    Zhang, Xu
    Zhao, Jun
    Dong, Hongbiao
    APPLIED THERMAL ENGINEERING, 2024, 238
  • [23] Numerical and experimental study of inverse natural convection heat transfer for heat sink in a cavity with phase change material
    Chen, Han-Taw
    Zhang, Ri-Xin
    Yan, Wei-Mon
    Amani, Mohammad
    Ochodek, T.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 224
  • [24] Analysis on the convective heat transfer process and performance evaluation of Triply Periodic Minimal Surface (TPMS) based on Diamond, Gyroid and Iwp
    Tang, Wei
    Zhou, Hua
    Zeng, Yun
    Yan, Minglei
    Jiang, Chenglu
    Yang, Ping
    Li, Qing
    Li, Zhida
    Fu, Junheng
    Huang, Yi
    Zhao, Yang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 201
  • [25] Heat transfer performance of a novel PCM based heat sink coupled with heat pipe: An experimental study
    Shailesh, K.
    Naresh, Y.
    Banerjee, J.
    APPLIED THERMAL ENGINEERING, 2023, 229
  • [26] Triply periodic minimal surfaces based topology optimization for the hydrodynamic and convective heat transfer
    Xia, Qing
    Zhu, Junxia
    Yu, Qian
    Kim, Junseok
    Li, Yibao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 131
  • [27] Experimental Investigations on Effect of Orientation on Thermal Performance of a Novel Phase Change Material-Based Heat Sink
    Shankar, Ch Ravi
    Naresh, Y.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2023, 15 (09)
  • [28] Heat transfer characteristics of thermal energy storage for PCM (phase change material) melting in horizontal tube: Numerical and experimental investigations
    Aadmi, Moussa
    Karkri, Mustapha
    El Hammouti, Mimoun
    ENERGY, 2015, 85 : 339 - 352
  • [29] Thermal Performance Evaluation of a Phase Change Material Based Heat Sink : A Numerical Study
    Thomas, Jesto
    Srivatsa, P. V. S. S.
    Krishnan, Ramesh S.
    Baby, Rajesh
    1ST GLOBAL COLLOQUIUM ON RECENT ADVANCEMENTS AND EFFECTUAL RESEARCHES IN ENGINEERING, SCIENCE AND TECHNOLOGY - RAEREST 2016, 2016, 25 : 1182 - 1190
  • [30] Numerical Investigations on Melting of Phase Change Material (PCM) with Different Arrangements of Heat Source-sink Pairs Under Microgravity
    Hasibuzzaman Mahmud
    Dewan Hasan Ahmed
    Microgravity Science and Technology, 2022, 34