Experimental and numerical investigations on the intermittent heat transfer performance of phase change material (PCM)-based heat sink with triply periodic minimal surfaces (TPMS)

被引:0
|
作者
Wang, Jiabin [1 ]
Pu, Wenhao [1 ]
Zhao, Haisheng [2 ]
Qiao, Long [1 ]
Song, Nanxin [1 ]
Yue, Chen [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Key Lab Thermal Management & Energy Utilizat Aircr, Minist Ind & Informat Technol, Nanjing 210016, Jiangsu, Peoples R China
[2] HFYC Zhenjiang Addit Mfg Co Ltd, Zhenjiang 212132, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase change material; Triply periodic minimal surfaces; Intermittent; Temperature control; Heat sink; THERMAL-ENERGY STORAGE; SOLID GALLIUM; METAL; PCM; ENHANCEMENT; MANAGEMENT; APPLICABILITY; CHUNKS;
D O I
10.1016/j.applthermaleng.2024.123864
中图分类号
O414.1 [热力学];
学科分类号
摘要
The excessive heat generated during the operation of electronic components leads to significant temperature increases, posing a significant risk to their service life. For the problem of efficient thermal management of electronic devices in confined spaces experiencing high heat flow, a scheme using triply periodic minimal surfaces and a phase change material-based active-passive cooling heat sink is proposed to control the temperature of electronic equipment. The apparent heat capacity method is employed to simulate the intermittent process of the phase change material-based heat sink. The optimization based on Box-Behnken Design and Nondominated Sorting Genetic Algorithm II is analyzed to obtain an improved triply periodic minimal surface structure. The effect of thermal performance (including base temperature, liquid fraction, and Grashof number) of an intermittent heat sink based on an improved structure is discussed. Visualization and temperature testing platforms are established. Through visualization experiments, the internal temperature and liquid fraction distribution of the heat sink are obtained, and the simulation results are in good agreement with the test results. The results show that the base temperature, liquid fraction, and Grashof number achieve a steady periodic variation during the intermittent process. Specifically, the base temperature remains stable in the range of 314 K to 340 K, the liquid fraction stabilizes between 0.8 and 1.0, and the Grashof number stabilizes between 100 and 1000. At the heating power of 30 W or below, the base temperature of the heat sink exhibits a steady periodic variation. At the heating power of 40 W, the maximum base temperature of the heat sink exceeds 370 K.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Investigations on the heat transfer performance of phase change material (PCM)-based heat sink with triply periodic minimal surfaces (TPMS)
    Wang, Jiabin
    Pu, Wenhao
    Zhao, Haisheng
    Qiao, Long
    Song, Nanxin
    Yue, Chen
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 234
  • [2] Heat transfer performance of a finned metal foam-phase change material (FMF-PCM) system incorporating triply periodic minimal surfaces (TPMS)
    Qureshi, Zahid Ahmed
    Elnajjar, Emad
    Al-Ketan, Oraib
    Abu Al-Rub, Rashid
    Al-Omari, Salah Burhan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 170
  • [3] Experimental and numerical investigations on the intermittent heat transfer performance of rectangular cavity plate fin phase change material based heat sink
    Yang, Yu
    Pu, Wenhao
    Yao, Zhaohui
    Zhang, Qi
    Wang, Jiabin
    Han, Dong
    JOURNAL OF ENERGY STORAGE, 2023, 60
  • [4] Experimental investigation on heat transfer characteristics of copper heat exchangers based on triply periodic minimal surfaces (TPMS)
    Qian, Chenyi
    Wang, Jiaxuan
    Zhong, Haozhang
    Qiu, Xiang
    Yu, Binbin
    Shi, Junye
    Chen, Jiangping
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 152
  • [5] Investigation on flow and heat transfer in various channels based on triply periodic minimal surfaces (TPMS)
    Wang, Jinghan
    Chen, Kai
    Zeng, Min
    Ma, Ting
    Wang, Qiuwang
    Cheng, Zhilong
    ENERGY CONVERSION AND MANAGEMENT, 2023, 283
  • [6] Numerical and experimental investigation of additive manufactured heat exchanger using triply periodic minimal surfaces (TPMS)
    Wang, Jiaxuan
    Qian, Chenyi
    Qiu, Xiang
    Yu, Binbin
    Yan, Lixia
    Shi, Junye
    Chen, Jiangping
    Thermal Science and Engineering Progress, 2024, 55
  • [7] Heat transfer characterization of waste heat recovery heat exchanger based on flexible hybrid triply periodic minimal surfaces (TPMS)
    Min, Rui
    Wang, Zhaohui
    Yang, Haonan
    Bao, Rongqing
    Zhang, Ningjia
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 157
  • [8] Experimental investigations on the heat transfer of melting phase change material (PCM)
    Sun, Xiaoqin
    Chu, Youhong
    Mo, Yajing
    Fan, Siyuan
    Liao, Shuguang
    CLEANER ENERGY FOR CLEANER CITIES, 2018, 152 : 186 - 191
  • [9] Experimental and Numerical Investigations on a Phase Change Material Based Heat Sink with Symbiotically Joined Heat Pipe
    Marri, Girish Kumar
    Balaji, Chakravarthy
    HEAT TRANSFER ENGINEERING, 2021, 42 (01) : 23 - 40
  • [10] Convection Heat Transfer and Performance Analysis of a Triply Periodic Minimal Surface (TPMS) for a Novel Heat Exchanger
    Saghir, Mohamad Ziad
    Yahya, Mohammad
    ENERGIES, 2024, 17 (17)