On a Mixed Stokes Problem with Variable Viscosity in the 2D Exterior Domain

被引:0
|
作者
Dagnaw, Mulugeta A. [1 ]
机构
[1] Injibara Univ, Injibara, Ethiopia
来源
关键词
INTEGRAL-EQUATIONS; BVP; EQUIVALENT; SYSTEM;
D O I
10.1007/978-3-031-41665-1_15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The boundary-domain integral equations for the mixed boundary value problem for a compressible Stokes system of partial differential equations with variable viscosity in the two-dimensional unbounded domain are considered. An appropriate parametrix is used to reduce this problem to some direct segregated boundary-domain integral equations (BDIEs). The equivalence of the original BVP and the obtained BDIEs are analysed in weighted Sobolev spaces.
引用
收藏
页码:133 / 144
页数:12
相关论文
共 50 条
  • [31] EXISTENCE, UNIQUENESS AND LQ-ESTIMATES FOR THE STOKES PROBLEM IN AN EXTERIOR DOMAIN
    GALDI, GP
    SIMADER, CG
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (04) : 291 - 318
  • [32] Natural boundary element method for stokes problem of exterior circular domain
    Peng, W. H.
    Dong, Z. Z.
    Cao, G. H.
    Zhao, H. M.
    NEW TRENDS IN FLUID MECHANICS RESEARCH: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON FLUID MECHANICS, 2007, : 383 - 383
  • [33] The Dirichlet Problem on Wave Propagation in a 2D Exterior Cracked Domain without Compatibility Conditions at the Tips of the Cracks
    Krutitskii, P. A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [34] AN ITERATIVE METHOD FOR THE STOKES-TYPE PROBLEM WITH VARIABLE VISCOSITY
    Grinevich, Piotr P.
    Olshanskii, Maxim A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05): : 3959 - 3978
  • [35] On the decay of solutions to the 2D Neumann exterior problem for the wave equation
    Secchi, P
    Shibata, Y
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) : 221 - 236
  • [36] Large time behavior for the incompressible Navier–Stokes flows in 2D exterior domains
    Pigong Han
    Manuscripta Mathematica, 2012, 138 : 347 - 370
  • [37] On a vorticity minimization problem for the stationary 2D Stokes equations
    Kim, H
    Kwon, OK
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 43 (01) : 45 - 63
  • [38] On Convergence of Arbitrary D-Solution of Steady Navier–Stokes System in 2D Exterior Domains
    Mikhail V. Korobkov
    Konstantin Pileckas
    Remigio Russo
    Archive for Rational Mechanics and Analysis, 2019, 233 : 385 - 407
  • [39] No-Slip Boundary Condition for Vorticity Equation in 2D Exterior Domain
    Aleksei Gorshkov
    Journal of Mathematical Fluid Mechanics, 2023, 25
  • [40] Deterministic and stochastic 2D Navier-Stokes equations with anisotropic viscosity
    Liang, Siyu
    Zhang, Ping
    Zhu, Rongchan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 : 473 - 508