Are We Losing Interest in Context-Aware Recommender Systems?

被引:0
|
作者
Rook, Laurens [1 ]
Zanker, Markus [2 ,3 ]
Jannach, Dietmar [3 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
[2] Free Univ Bozen Bolzano, Bolzano, Italy
[3] Univ Klagenfurt, Klagenfurt, Austria
关键词
Context; Context-awareness; Personalization; Recommender Systems; User Intent;
D O I
10.1145/3631700.3665190
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contextual information is a prerequisite for timely offering of personalized decision support and recommendation. Yet, research on context-aware recommender systems (CARS) does not appear to be thriving, and finding public datasets containing context factors is a challenging task. We can make various assumptions about why this drop in research interest happened - be it ethical considerations or the popularity of opaque deep learning models that merely consider context in an implicit way. This is an unwelcome development. We argue that continued effort must be put on the creation of suitable datasets. Furthermore, we see significant opportunities in the development of next-generation CARS in the space of interactive AI assistants powered by Large Language Models.
引用
收藏
页码:229 / 230
页数:2
相关论文
共 50 条
  • [21] CARS: Workshop on Context-Aware Recommender Systems 2022
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Ricci, Francesco
    Tuzhilin, Alexander
    Unger, Moshe
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 691 - 693
  • [22] Special Issue on Context-aware Mobile Recommender Systems
    Colombo-Mendoza, Luis Omar
    Valencia-Garcia, Rafael
    Alor-Hernandez, Giner
    Bellavista, Paolo
    PERVASIVE AND MOBILE COMPUTING, 2017, 38 : 444 - 445
  • [23] User Modeling Framework for Context-Aware Recommender Systems
    Inzunza, Sergio
    Juarez-Ramirez, Reyes
    Jimenez, Samantha
    RECENT ADVANCES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, 2017, 569 : 899 - 908
  • [24] Workshop on Context-Aware Recommender Systems (CARS) 2021
    Adomavicius, Gediminas
    Bauman, Konstantin
    Mobasher, Bamshad
    Ricci, Francesco
    Tuzhilin, Alexander
    Unger, Moshe
    15TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS 2021), 2021, : 813 - 814
  • [25] Preface to the special issue on context-aware recommender systems
    Gediminas Adomavicius
    Dietmar Jannach
    User Modeling and User-Adapted Interaction, 2014, 24 : 1 - 5
  • [26] Mining Contextual Knowledge for Context-Aware Recommender Systems
    Zhang, Wenping
    Lau, Raymond
    Tao, Xiaohui
    2012 NINTH IEEE INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING (ICEBE), 2012, : 356 - 360
  • [27] Context-aware recommender systems and cultural heritage: a survey
    Casillo, Mario
    Colace, Francesco
    Conte, Dajana
    Lombardi, Marco
    Santaniello, Domenico
    Valentino, Carmine
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (4) : 3109 - 3127
  • [28] Privileged contextual information for context-aware recommender systems
    Sundermann, Camila Vaccari
    Domingues, Marcos Aurelio
    Conrado, Merley da Silva
    Rezende, Solange Oliveira
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 57 : 139 - 158
  • [29] A Social Context-Aware Recommender of Itineraries Between Relevant Points of Interest
    D'Agostino, Dario
    Gasparetti, Fabio
    Micarelli, Alessandro
    Sansonetti, Giuseppe
    HCI INTERNATIONAL 2016 - POSTERS' EXTENDED ABSTRACTS, PT II, 2016, 618 : 354 - 359
  • [30] Datasets for Context-Aware Recommender Systems: Current Context and Possible Directions
    Ilarri, Sergio
    Trillo-Lado, Raquel
    Hermoso, Ramon
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW), 2018, : 25 - 28