Filter, Rank, and Prune: Learning Linear Cyclic Gaussian Graphical Models

被引:0
|
作者
Yi, Soheun [1 ]
Lee, Sanghack [2 ]
机构
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 USA
[2] Seoul Natl Univ, Grad Sch Data Sci, Seoul, South Korea
关键词
VARIABLE SELECTION; LIKELIHOOD;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Causal structures in the real world often exhibit cycles naturally due to equilibrium, homeostasis, or feedback. However, causal discovery from observational studies regarding cyclic models has not been investigated extensively because the underlying structure of a linear cyclic structural equation model (SEM) cannot be determined solely from observational data. Inspired by the Bayesian information Criterion (BIC), we construct a score function that assesses both accuracy and sparsity of the structure to determine which linear Gaussian SEM is the best when only observational data is given. Then, we formulate a causal discovery problem as an optimization problem of the measure and propose the Filter, Rank, and Prune (FRP) method for solving it. We empirically demonstrate that our method outperforms competitive cyclic causal discovery baselines.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Learning linear non-Gaussian graphical models with multidirected edges
    Liu, Yiheng
    Robeva, Elina
    Wang, Huanqing
    JOURNAL OF CAUSAL INFERENCE, 2021, 9 (01) : 250 - 263
  • [2] Partially Linear Additive Gaussian Graphical Models
    Geng, Sinong
    Yan, Minhao
    Kolar, Mladen
    Koyejo, Oluwasanmi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [3] Learning Gaussian graphical models with latent confounders
    Wang, Ke
    Franks, Alexander
    Oh, Sang-Yun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 198
  • [4] Singular Gaussian graphical models: Structure learning
    Masmoudi, Khalil
    Masmoudi, Afif
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (10) : 3106 - 3117
  • [5] Learning Latent Variable Gaussian Graphical Models
    Meng, Zhaoshi
    Eriksson, Brian
    Hero, Alfred O., III
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1269 - 1277
  • [6] Unsupervised Learning with Truncated Gaussian Graphical Models
    Su, Qinliang
    Liao, Xuejun
    Li, Chunyuan
    Gan, Zhe
    Carin, Lawrence
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2583 - 2589
  • [7] Learning Dynamic Conditional Gaussian Graphical Models
    Huang, Feihu
    Chen, Songcan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2018, 30 (04) : 703 - 716
  • [8] LEARNING GAUSSIAN GRAPHICAL MODELS USING DISCRIMINATED HUB GRAPHICAL LASSO
    Li, Zhen
    Bai, Jingtian
    Zhou, Weilian
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2471 - 2475
  • [9] Learning Networks from Gaussian Graphical Models and Gaussian Free Fields
    Subhro Ghosh
    Soumendu Sundar Mukherjee
    Hoang-Son Tran
    Ujan Gangopadhyay
    Journal of Statistical Physics, 191
  • [10] Learning Networks from Gaussian Graphical Models and Gaussian Free Fields
    Ghosh, Subhro
    Mukherjee, Soumendu Sundar
    Tran, Hoang-Son
    Gangopadhyay, Ujan
    JOURNAL OF STATISTICAL PHYSICS, 2024, 191 (04)