Testing the Number of Common Factors by Bootstrapped Sample Covariance Matrix in High-Dimensional Factor Models

被引:0
|
作者
Yu, Long [1 ,2 ]
Zhao, Peng [3 ,4 ]
Zhou, Wang [5 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
[2] Minist Educ, Key Lab Math Econ SUFE, Shanghai, Peoples R China
[3] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou, Jiangsu, Peoples R China
[4] Jiangsu Normal Univ, Jiangsu Prov Key Lab Educ Big Data Sci & Engn, Xuzhou, Jiangsu, Peoples R China
[5] Natl Univ Singapore, Dept Stat & Data Sci, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
Eigenvalue distribution; Hypothesis testing; Principal component analysis; Randomized test; Spiked covariance model; DYNAMIC-FACTOR-MODEL; SPECTRAL STATISTICS; EIGENVALUE; IDENTIFICATION; LIMIT;
D O I
10.1080/01621459.2024.2346364
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article studies the impact of bootstrap procedure on the eigenvalue distributions of the sample covariance matrix under a high-dimensional factor structure. We provide asymptotic distributions for the top eigenvalues of bootstrapped sample covariance matrix under mild conditions. After bootstrap, the spiked eigenvalues which are driven by common factors will converge weakly to Gaussian limits after proper scaling and centralization. However, the largest non-spiked eigenvalue is mainly determined by the order statistics of the bootstrap resampling weights, and follows extreme value distribution. Based on the disparate behavior of the spiked and non-spiked eigenvalues, we propose innovative methods to test the number of common factors. Indicated by extensive numerical and empirical studies, the proposed methods perform reliably and convincingly under the existence of both weak factors and cross-sectionally correlated errors. Our technical details contribute to random matrix theory on spiked covariance model with convexly decaying density and unbounded support, or with general elliptical distributions. Supplementary materials for this article are available online, including a standardized description of the materials available for reproducing the work.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [31] Estimation of a high-dimensional covariance matrix with the Stein loss
    Tsukuma, Hisayuki
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 148 : 1 - 17
  • [32] Hypothesis testing for the identity of high-dimensional covariance matrices
    Qian, Manling
    Tao, Li
    Li, Erqian
    Tian, Maozai
    STATISTICS & PROBABILITY LETTERS, 2020, 161
  • [33] Testing the equality of multiple high-dimensional covariance matrices
    Shen J.
    Results in Applied Mathematics, 2022, 15
  • [34] Testing proportionality of two high-dimensional covariance matrices
    Cheng, Guanghui
    Liu, Baisen
    Tian, Guoliang
    Zheng, Shurong
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 150
  • [35] CLT for spiked eigenvalues of a sample covariance matrix from high-dimensional Gaussian mean mixtures
    Li, Weiming
    Zhu, Junpeng
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 193
  • [36] A high-dimensional classification rule using sample covariance matrix equipped with adjusted estimated eigenvalues
    Baek, Seungchul
    Park, Hoyoung
    Park, Junyong
    STAT, 2021, 10 (01):
  • [37] A Sparse Approximate Factor Model for High-Dimensional Covariance Matrix Estimation and Portfolio Selection
    Daniele, Maurizio
    Pohlmeier, Winfried
    Zagidullina, Aygul
    JOURNAL OF FINANCIAL ECONOMETRICS, 2024,
  • [38] Multi-sample hypothesis testing of high-dimensional mean vectors under covariance heterogeneity
    Wu, Lixiu
    Hu, Jiang
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2024, 76 (04) : 579 - 615
  • [39] Testing for time-varying factor loadings in high-dimensional factor models
    Xu, Wen
    ECONOMETRIC REVIEWS, 2022, 41 (08) : 918 - 965
  • [40] High-dimensional VARs with common factors
    Miao, Ke
    Phillips, Peter C. B.
    Su, Liangjun
    JOURNAL OF ECONOMETRICS, 2023, 233 (01) : 155 - 183