Eccentricity and inclination of massive planets inside low-density cavities: results of 3D simulations

被引:1
|
作者
Romanova, M. M. [1 ,2 ]
Koldoba, A., V [3 ]
Ustyugova, G., V [4 ]
Espaillat, C. [5 ]
Lovelace, R. V. E. [1 ,2 ]
机构
[1] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
[2] Cornell Univ, Carl Sagan Inst, Ithaca, NY 14853 USA
[3] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow, Russia
[4] Keldysh Inst Appl Math, Moscow 125047, Russia
[5] Boston Univ, Dept Astron, 725 Commonwealth Ave, Boston, MA 02215 USA
关键词
accretion discs; hydrodynamics; planet-disc interactions; protoplanetary discs; INCLINED ORBIT; DISK; EVOLUTION; MIGRATION; JUPITERS; BINARY; GROWTH; PERTURBATIONS; RESONANCES; EXCITATION;
D O I
10.1093/mnras/stae1658
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the evolution of eccentricity and inclination of massive planets in low-density cavities of protoplanetary discs using three-dimensional (3D) simulations. When the planet's orbit is aligned with the equatorial plane of the disc, the eccentricity increases to high values of 0.7-0.9 due to the resonant interaction with the inner parts of the disc. For planets on inclined orbits, the eccentricity increases due to the Kozai-Lidov mechanism, where the disc acts as an external massive body, which perturbs the planet's orbit. At small inclination angles, ${\lesssim}30<^>\circ$, the resonant interaction with the inner disc strongly contributes to the eccentricity growth, while at larger angles, eccentricity growth is mainly due to the Kozai-Lidov mechanism. We conclude that planets inside low-density cavities tend to acquire high eccentricity if favourable conditions give sufficient time for growth. The final value of the planet's eccentricity after the disc dispersal depends on the planet's mass and the properties of the cavity and protoplanetary disc.
引用
收藏
页码:3509 / 3525
页数:17
相关论文
共 50 条
  • [21] Turbulence and nuclear reactions in 3D hydrodynamics simulations of massive stars
    Rizzuti, Federico
    Hirschi, Raphael
    Georgy, Cyril
    Arnett, David
    Meakin, Casey
    Murphy, Alexander
    NUCLEAR PHYSICS IN ASTROPHYSICS - X, NPA-X 2022, 2023, 279
  • [22] 3D simulations of a neon burning convective shell in a massive star
    Georgy, C.
    Rizzuti, F.
    Hirschi, R.
    Varma, V.
    Arnett, W. D.
    Meakin, C.
    Mocak, M.
    Murphy, A. StJ
    Rauscher, T.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 531 (04) : 4293 - 4310
  • [23] REGULAR HEXAHEDRON TESSELLATION ALGORITHM FOR 3D COMPLEX ENTITY MODELS WITH INSIDE CAVITIES
    Guo Jiateng
    Wu Lixin
    Ma Hongbin
    Yang Yizhou
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 4015 - 4018
  • [24] Linking 1D evolutionary to 3D hydrodynamical simulations of massive stars
    Cristini, A.
    Meakin, C.
    Hirschi, R.
    Arnett, D.
    Georgy, C.
    Viallet, M.
    PHYSICA SCRIPTA, 2016, 91 (03)
  • [25] Information Hiding Algorithm of Low-Density 3D Model for Multi-fusion Ocean Applications
    Duan, Tao
    Zhang, Jie
    Zhao, Jing
    JOURNAL OF COASTAL RESEARCH, 2019, : 133 - 136
  • [26] Hot deformation characterization of duplex low-density steel through 3D processing map development
    Mohamadizadeh, A.
    Zarei-Hanzaki, A.
    Abedi, H. R.
    Mehtonen, S.
    Porter, D.
    MATERIALS CHARACTERIZATION, 2015, 107 : 293 - 301
  • [27] Low-density polymer gel dosimeters for 3D radiation dosimetry in the thoracic region: A preliminary study
    De Deene, Yves
    Vandecasteele, Jan
    Vercauteren, Tom
    7TH INTERNATIONAL CONFERENCE ON 3D RADIATION DOSIMETRY (IC3DDOSE), 2013, 444
  • [28] A limit on eccentricity growth from global 3D simulations of disc-planet interactions
    Dunhill, A. C.
    Alexander, R. D.
    Armitage, P. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 428 (04) : 3072 - 3082
  • [29] 3D IMPURITIES IN AL - DENSITY FUNCTIONAL RESULTS
    NIEMINEN, RM
    PUSKA, M
    JOURNAL OF PHYSICS F-METAL PHYSICS, 1980, 10 (05): : L123 - L127
  • [30] Results from 3D electroweak phase transition simulations
    Farakos, K
    Kajantie, K
    Laine, M
    Rummukainen, K
    Shaposhnikov, M
    NUCLEAR PHYSICS B, 1996, : 705 - 708