INTERSECTION DE RHAM COMPLEXES IN POSITIVE CHARACTERISTIC
被引:0
|
作者:
Sheng, Mao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R ChinaUniv Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
Sheng, Mao
[1
,2
]
Zhang, Zebao
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Technol, Math Sci Res Ctr, Hongguang Rd 69, Chongqing 400054, Peoples R ChinaUniv Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
Zhang, Zebao
[3
]
机构:
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
[3] Chongqing Univ Technol, Math Sci Res Ctr, Hongguang Rd 69, Chongqing 400054, Peoples R China
We establish a positive characteristic analogue of intersection cohomology theory for variations of Hodge structure. It includes: a) the de Rham-Higgs comparison theorem for the intersection de Rham complex; b) the E1-degeneration theorem for the intersection de Rham complex of a periodic de Rham bundle; c) the Kodaira-Saito vanishing theorem for the intersection cohomology groups of a periodic Higgs bundle. These results generalize the Kodaira-Saito vanishing theorem of Arapura [Ar]. As an application, we give an algebraic proof of the E1-degeneration theo[KK], and the vanishing theorem of Saito [Sa] for VHSs of geometric origin.