Integrable dynamics and geometric conservation laws of hyperelastic strips

被引:0
|
作者
Tukel, Gozde 'Ozkan [1 ]
机构
[1] Isparta Univ Appl Sci, Technol Fac, Dept Basic Sci, Isparta, Turkiye
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 09期
关键词
conservation laws; hyperelastic strips; p-elastic strips; Sadowsky-type functional; variational calculus; CURVES; FUNCTIONALS; ELASTICA;
D O I
10.3934/math.20241186
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the energy-minimizing configuration of the Sadowsky-type functional fornarrow rectifying strips. We show that the functional is proportional to thep-Willmore functional usingclassical analysis techniques and the geometry of developable surfaces. We introduce hyperelasticstrips (or p-elastic strips) as rectifying strips whose base curves are the critical points of the Sadowsky-type functional and find the Euler-Lagrange equations for hyperelastic strips using a variationalapproach. We show a naturally expected relationship between the planar stationary points of theSadowsky-type functional and the hyperelastic curves. We derive two conservation vector fields, theinternal force and torque, using Euclidean motions and obtain the first and second conservation lawsfor hyperelastic strips.
引用
收藏
页码:24372 / 24384
页数:13
相关论文
共 50 条
  • [11] Integrable Trotterization: Local Conservation Laws and Boundary Driving
    Vanicat, Matthieu
    Zadnik, Lenart
    Prosen, Tomaz
    PHYSICAL REVIEW LETTERS, 2018, 121 (03)
  • [12] Hierarchies, integrable decompositions and conservation laws of Geng equation
    Ji, He
    Yao, Yu-Qin
    Chen, Deng-Yuan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (05) : 1890 - 1901
  • [13] CONSERVATION-LAWS AND BOSONIZATION IN INTEGRABLE LUTTINGER LIQUIDS
    CARMELO, JMP
    CASTRO NETO, AH
    CAMPBELL, DK
    PHYSICAL REVIEW LETTERS, 1994, 73 (07) : 926 - 929
  • [14] Approximate conservation laws in perturbed integrable lattice models
    Mierzejewski, Marcin
    Prosen, Tomaz
    Prelovsek, Peter
    PHYSICAL REVIEW B, 2015, 92 (19)
  • [15] Exact Solutions and Conservation Laws for a New Integrable Equation
    Gandarias, M. L.
    Bruzon, M. S.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 2256 - 2259
  • [16] Multi-dimensional conservation laws and integrable systems
    Makridin, Zakhar V.
    Pavlov, Maxim V.
    STUDIES IN APPLIED MATHEMATICS, 2019, 143 (04) : 339 - 355
  • [17] Regularized Conservation Laws and Nonlinear Geometric Optics
    M. Oberguggenberger
    Y. G. Wang
    Monatshefte für Mathematik, 1999, 127 : 55 - 66
  • [18] Geometric Singularities for Solutions of Single Conservation Laws
    Shyuichi Izumiya
    Georgios T. Kossioris
    Archive for Rational Mechanics and Analysis, 1997, 139 : 255 - 290
  • [19] High order geometric smoothness for conservation laws
    Pinto, MC
    Cohen, A
    Petrushev, P
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2005, 2 (01) : 39 - 59
  • [20] Regularized conservation laws and nonlinear geometric optics
    Oberguggenberger, M
    Wang, YG
    MONATSHEFTE FUR MATHEMATIK, 1999, 127 (01): : 55 - 66