Brain Tumor Detection Using Magnetic Resonance Imaging and Convolutional Neural Networks

被引:0
|
作者
Martinez-Del-Rio-Ortega, Rafael [1 ]
Civit-Masot, Javier [1 ,2 ,3 ]
Luna-Perejon, Francisco [1 ,2 ,3 ,4 ]
Dominguez-Morales, Manuel [1 ,2 ,3 ,4 ]
机构
[1] Univ Seville, ETS Ingn Informat, Avda Reina Mercedes S-N, Seville 41012, Spain
[2] Univ Seville, Architecture & Comp Technol Dept, Robot & Technol Comp Res Grp TEP 108, ETS Ingn Informat, Avda Reina Mercedes S-N, Seville 41012, Spain
[3] Univ Seville, EPS, Seville 41011, Spain
[4] Univ Seville, Comp Engn Res Inst I3US, ETS Ingn Informat, Avda Reina Mercedes S-N, Seville 41012, Spain
关键词
brain tumors; MRI; convolutional neural networks; deep learning; image classification; medical imaging;
D O I
10.3390/bdcc8090123
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early and precise detection of brain tumors is critical for improving clinical outcomes and patient quality of life. This research focused on developing an image classifier using convolutional neural networks (CNN) to detect brain tumors in magnetic resonance imaging (MRI). Brain tumors are a significant cause of morbidity and mortality worldwide, with approximately 300,000 new cases diagnosed annually. Magnetic resonance imaging (MRI) offers excellent spatial resolution and soft tissue contrast, making it indispensable for identifying brain abnormalities. However, accurate interpretation of MRI scans remains challenging, due to human subjectivity and variability in tumor appearance. This study employed CNNs, which have demonstrated exceptional performance in medical image analysis, to address these challenges. Various CNN architectures were implemented and evaluated to optimize brain tumor detection. The best model achieved an accuracy of 97.5%, sensitivity of 99.2%, and binary accuracy of 98.2%, surpassing previous studies. These results underscore the potential of deep learning techniques in clinical applications, significantly enhancing diagnostic accuracy and reliability.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [21] Breast Tumor Computer-Aided Detection System Based on Magnetic Resonance Imaging Using Convolutional Neural Network
    Lu, Jing
    Wu, Yan
    Xiong, Yao
    Zhou, Yapeng
    Zhao, Ziliang
    Shang, Liutong
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 130 (01): : 365 - 377
  • [22] Breast tumor computer-aided detection system based on magnetic resonance imaging using convolutional neural network
    Lu J.
    Wu Y.
    Hu M.
    Xiong Y.
    Zhou Y.
    Zhao Z.
    Shang L.
    CMES - Computer Modeling in Engineering and Sciences, 2022, 130 (01): : 365 - 377
  • [23] Improvement of Automatic Glioma Brain Tumor Detection Using Deep Convolutional Neural Networks
    Altameem, Ayman
    Mallikarjuna, Basetty
    Saudagar, Abdul Khader Jilani
    Sharma, Meenakshi
    Poonia, Ramesh Chandra
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (06) : 530 - 544
  • [24] MRI brain tumor detection and classification using parallel deep convolutional neural networks
    Rahman T.
    Islam M.S.
    Measurement: Sensors, 2023, 26
  • [25] Enhanced Brain Tumor Detection and Classification in MRI Scans using Convolutional Neural Networks
    Zaitoon, Ruqsar
    Syed, Hussain
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (09) : 266 - 275
  • [26] Convolutional Neural Networks in Spinal Magnetic Resonance Imaging: A Systematic Review
    Baur, David
    Kroboth, Katharina
    Heyde, Christoph-Eckhard
    Voelker, Anna
    WORLD NEUROSURGERY, 2022, 166 : 60 - 70
  • [27] Radiomics-based convolutional neural network for brain tumor segmentation on multiparametric magnetic resonance imaging
    Prasanna, Prateek
    Karnawat, Ayush
    Ismail, Marwa
    Madabhushi, Anant
    Tiwaria, Pallavi
    JOURNAL OF MEDICAL IMAGING, 2019, 6 (02)
  • [28] Neural Gas Network Image Features and Segmentation for Brain Tumor Detection Using Magnetic Resonance Imaging Data
    Mousavi, S. Muhammad Hossein
    arXiv, 2023,
  • [29] A deep learning approach for brain tumor detection using magnetic resonance imaging
    Nayan, Al-Akhir
    Mozumder, Ahamad Nokib
    Haque, Md. Rakibul
    Sifat, Fahim Hossain
    Mahmud, Khan Raqib
    Azad, Abul Kalam Al
    Kibria, Muhammad Golam
    arXiv, 2022,
  • [30] Brain Tumor Classification Using Pretrained Convolutional Neural Networks
    Daniel, Mihalas Constantin
    Ruxandra, Lascu Mihaela
    2021 16TH INTERNATIONAL CONFERENCE ON ENGINEERING OF MODERN ELECTRIC SYSTEMS (EMES), 2021, : 130 - 133