UNCERTAINTY BASED OPTIMIZATION STRATEGY FOR THE GAPPY-POD MULTI-FIDELITY METHOD

被引:0
|
作者
Poethke, Bernhard [1 ]
Voelker, Stefan [1 ]
Vogeler, Konrad [2 ]
机构
[1] Siemens AG, Mulheim, Germany
[2] Tech Univ Dresden, Dresden, Germany
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the surrogate model-based optimization of turbine airfoils, often only the prediction values for objective and constraints are employed, without considering uncertainties in the prediction. This is also the case for multi-fidelity optimization strategies based on e.g. the Gappy-POD approach, in which results from analyses of different fidelities are incorporated. However, the consideration of uncertainties in global optimization has the advantage that a balanced coverage of the design space between unexplored regions and regions close to the current optimum takes place. This means that on the one hand regions are covered in which so far only a few sample points are present and thus a high degree of uncertainty exists (global exploration), and on the other hand regions with promising objective and constraint values are investigated (local exploitation). The genuine new contribution in this work is the quantification of the uncertainty of the multi-fidelity Gappy-POD method and an adapted optimization strategy based on it. The uncertainty quantification is based on the error of linear fitting of low-fidelity values to the POD basis and subsequent forward propagation to the high-fidelity values. The uncertainty quantification is validated for random airfoil designs in a design of experiment. Based on this, a global optimization strategy for constrained problems is presented, which is based on the well-known Efficient Global Optimization (EGO) strategy and the Feasible Expected Improvement criterion. This means that Kriging models are created for both the objective and the constraint values depending on the design variables that consider both the predictions and the uncertainties. This approach offers the advantage that existing and widely used programs or libraries can be used for multi-fidelity optimization that support the (single-fidelity) EGO algorithm. Finally, the method is demonstrated for an industrial test case. A comparison between a single-fidelity optimization and a multi-fidelity optimization is made, each with the EGO strategy. A coupling of 2D/3D simulations is used for multi-fidelity analyses. The proposed method achieves faster feasible members in the optimization, resulting in faster turn-around compared to the single-fidelity strategy.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A Machine Learning Based Hybrid Multi-Fidelity Multi-Level Monte Carlo Method for Uncertainty Quantification
    Khan, Nagoor Kani Jabarullah
    Elsheikh, Ahmed H.
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2019, 7
  • [42] Efficient initialization for multi-fidelity surrogate-based optimization
    Jeroen Wackers
    Riccardo Pellegrini
    Andrea Serani
    Michel Visonneau
    Matteo Diez
    Journal of Ocean Engineering and Marine Energy, 2023, 9 : 291 - 307
  • [43] Efficient initialization for multi-fidelity surrogate-based optimization
    Wackers, Jeroen
    Pellegrini, Riccardo
    Serani, Andrea
    Visonneau, Michel
    Diez, Matteo
    JOURNAL OF OCEAN ENGINEERING AND MARINE ENERGY, 2023, 9 (02) : 291 - 307
  • [44] A surrogate based multi-fidelity approach for robust design optimization
    Chakraborty, Souvik
    Chatterjee, Tanmoy
    Chowdhury, Rajib
    Adhikari, Sondipon
    APPLIED MATHEMATICAL MODELLING, 2017, 47 : 726 - 744
  • [45] A multi-fidelity transfer learning strategy based on multi-channel fusion
    Zhang, Zihan
    Ye, Qian
    Yang, Dejin
    Wang, Na
    Meng, Guoxiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 506
  • [46] Multi-fidelity uncertainty quantification method with application to nonlinear structural response analysis
    Yang, Qiang
    Meng, Songhe
    Jin, Hua
    Xie, Weihua
    Zhang, Xinghong
    APPLIED MATHEMATICAL MODELLING, 2019, 75 : 853 - 864
  • [47] Multi-fidelity optimization strategy for the industrial aerodynamic design of helicopter rotor blades
    Leusink, Debbie
    Alfano, David
    Cinnella, Paola
    AEROSPACE SCIENCE AND TECHNOLOGY, 2015, 42 : 136 - 147
  • [48] A Multi-fidelity Method-Based Aerodynamic Design Strategy for Preliminary Prop-Rotors
    Zhang, Hang
    Zhao, Qijun
    Zhao, Guoqing
    PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY (APISAT 2021), VOL 1, 2023, 912 : 361 - 374
  • [49] A Multi-Fidelity Successive Response Surface Method for Crashworthiness Optimization Problems
    Lualdi, Pietro
    Sturm, Ralf
    Siefkes, Tjark
    APPLIED SCIENCES-BASEL, 2023, 13 (20):
  • [50] Parallel multi-fidelity expected improvement method for efficient global optimization
    Guo, Zhendong
    Wang, Qineng
    Song, Liming
    Li, Jun
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 64 (03) : 1457 - 1468