Evidence of a second-order phase transition in the six-dimensional Ising spin glass in a field

被引:1
|
作者
Aguilar-Janita, M. [1 ]
Martin-Mayor, V. [2 ,3 ,6 ]
Moreno-Gordo, J. [2 ,3 ,4 ,5 ]
Ruiz-Lorenzo, J. J. [2 ,3 ,5 ,6 ]
机构
[1] Univ Rey Juan Carlos, Complex Syst Grp, Mostoles 28933, Madrid, Spain
[2] Univ Complutense, Dept Fis Teor, Madrid 28040, Spain
[3] Inst Biocomp & Fis Sistemas Complejos BIFI, Zaragoza 50018, Spain
[4] Univ Zaragoza, Dept Fis Teor, Zaragoza 50009, Spain
[5] Univ Extremadura, Dept Fis, Badajoz 06006, Spain
[6] Univ Extremadura, Inst Comp Cient Avanzada ICCAEx, Badajoz 06006, Spain
关键词
MONTE-CARLO; SCALING THEORY;
D O I
10.1103/PhysRevE.109.055302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The very existence of a phase transition for spin glasses in an external magnetic field is controversial, even in high dimensions. We carry out massive simulations of the Ising spin-glass in a field, in six dimensions (which, according to classical-but not generally accepted-field-theoretical studies, is the upper critical dimension). We obtain results compatible with a second-order phase transition and estimate its critical exponents for the simulated lattice sizes. The detailed analysis performed by other authors of the replica symmetric Hamiltonian, under the hypothesis of critical behavior, predicts that the ratio of the renormalized coupling constants remain bounded as the correlation length grows. Our numerical results are in agreement with this expectation.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] First- and second-order quantum phase transitions in the one-dimensional transverse-field Ising model with boundary fields
    Hu, Kun
    Wu, Xintian
    PHYSICAL REVIEW B, 2021, 103 (02)
  • [32] Second-order critical lines of spin-S Ising models in a splitting field using Grassmann techniques
    Fortin, J. -Y.
    Clusel, M.
    PHYSICAL REVIEW B, 2008, 78 (17):
  • [33] ONE-DIMENSIONAL ORDER-DISORDER MODEL WHICH APPROACHES A SECOND-ORDER PHASE TRANSITION
    BAKER, GA
    PHYSICAL REVIEW, 1961, 122 (05): : 1477 - &
  • [34] Absence of spin glass phase in the Edwards-Anderson Ising spin glass in magnetic field
    Sasaki, M.
    Hukushima, K.
    Yoshino, H.
    Takayama, H.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 310 (02) : 1514 - 1516
  • [35] Randomness-induced evolution of the first-order to the second-order phase transition in two-dimensional six-state potts model
    Shih, Chiachi
    Wang, Yingchuan
    Hu, Shingmin
    Chen, Muhsin
    Huang, Shuanyu
    LIFE SCIENCE JOURNAL-ACTA ZHENGZHOU UNIVERSITY OVERSEAS EDITION, 2009, 6 (02): : 29 - 32
  • [36] Second-order phase transition in phytoplankton trait dynamics
    Held, Jenny
    Lorimer, Tom
    Pomati, Francesco
    Stoop, Ruedi
    Albert, Carlo
    CHAOS, 2020, 30 (05)
  • [37] Second-Order Phase Transition in Causal Dynamical Triangulations
    Ambjorn, Jan
    Jordan, S.
    Jurkiewicz, J.
    Loll, R.
    PHYSICAL REVIEW LETTERS, 2011, 107 (21)
  • [38] INFLUENCE OF SAMPLE INHOMOGENEITIES ON A SECOND-ORDER PHASE TRANSITION
    MIKULINS.MA
    SOVIET PHYSICS JETP-USSR, 1969, 28 (06): : 1261 - &
  • [39] Field dependence of the magnetic entropy change in typical materials with a second-order phase transition
    Dong, Qiao-yan
    Zhang, Hong-wei
    Shen, Jue-lian
    Sun, Ji-rong
    Shen, Bao-gen
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 319 (1-2) : 56 - 59
  • [40] PHASE-TRANSITION IN THE +/- J ISING-SPIN-GLASS MODEL
    MORGENSTERN, I
    PHYSICAL REVIEW B, 1982, 25 (09): : 6071 - 6073