Optimality conditions for bilevel programmes via Moreau envelope reformulation

被引:0
|
作者
Bai, Kuang [1 ]
Ye, Jane J. [2 ]
Zeng, Shangzhi [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
[2] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bilevel programmes; Moreau envelope; directional constraint qualifications; sensitivity analysis; directional necessary optimality conditions; MATHEMATICAL PROGRAMS; CONSTRAINT QUALIFICATIONS; OPTIMIZATION PROBLEMS; CALCULUS;
D O I
10.1080/02331934.2024.2358086
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
For bilevel programmes with a convex lower-level programme, the classical approach replaces the lower-level programme with its Karush-Kuhn-Tucker condition and solve the resulting mathematical programme with complementarity constraint (MPCC). It is known that when the set of lower-level multipliers is not unique, MPCC may not be equivalent to the original bilevel problem, and many MPCC-tailored constraint qualifications do not hold. In this paper, we study bilevel programmes where the lower level is generalized convex. Applying the equivalent reformulation via Moreau envelope, we derive new directional optimality conditions. Even in the nondirectional case, the new optimality condition is stronger than the strong stationarity for the corresponding MPCC.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] New Optimality Conditions for the Semivectorial Bilevel Optimization Problem
    S. Dempe
    N. Gadhi
    A. B. Zemkoho
    Journal of Optimization Theory and Applications, 2013, 157 : 54 - 74
  • [32] Optimality conditions for pessimistic semivectorial bilevel programming problems
    Liu, Bingbing
    Wan, Zhongping
    Chen, Jiawei
    Wang, Guangmin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [33] Necessary optimality conditions for bilevel set optimization problems
    S. Dempe
    N. Gadhi
    Journal of Global Optimization, 2007, 39 : 529 - 542
  • [34] Optimality conditions for pessimistic bilevel problems using convexificator
    S. Dempe
    N. Gadhi
    L. Lafhim
    Positivity, 2020, 24 : 1399 - 1417
  • [35] Sufficient Optimality Conditions for a Bilevel Semivectorial DC Problem
    Gadhi, Nazih Abderrazzak
    Dempe, Stephan
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (15) : 1622 - 1634
  • [36] Optimality Conditions for a Nonsmooth Semivectorial Bilevel Optimization Problem
    Dempe, S.
    Gadhi, N.
    El Idrissi, M.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (03) : 298 - 319
  • [37] Bilevel road pricing: theoretical analysis and optimality conditions
    S. Dempe
    A. B. Zemkoho
    Annals of Operations Research, 2012, 196 : 223 - 240
  • [38] Bilevel road pricing: theoretical analysis and optimality conditions
    Dempe, S.
    Zemkoho, A. B.
    ANNALS OF OPERATIONS RESEARCH, 2012, 196 (01) : 223 - 240
  • [39] Fuzzy and Exact Optimality Conditions for a Bilevel Set-Valued Problem via Extremal Principles
    Dempe, S.
    Gadhi, N. A.
    Lafhim, L.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (08) : 907 - 920
  • [40] Optimality Conditions for Optimistic Bilevel Programming Problem Using Convexifactors
    Kohli, Bhawna
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 152 (03) : 632 - 651