The pseudospectrum of an operator with Bessel-type singularities

被引:0
|
作者
Boulton, Lyonell [1 ,2 ]
Marletta, Marco [3 ]
机构
[1] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Scotland
[2] Heriot Watt Univ, Maxwell Inst Math Sci, Edinburgh EH14 4AS, Scotland
[3] Cardiff Univ, Sch Math, Senghennydd Rd, Cardiff CF24 4AG, Wales
基金
英国工程与自然科学研究理事会;
关键词
spectrum and pseudospectrum; ordinary differential operators; pseudo-modes; NONSELF-ADJOINT OPERATOR; SPECTRAL-ANALYSIS; INSTABILITY; EIGENVALUES; PSEUDOMODES; BOUNDARY;
D O I
10.4171/JST/505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we examine the asymptotic structure of the pseudospectrum of the singular Sturm-Liouville operator L = @x(f x (f @x) x ) + @ x subject to periodic boundary conditions on a symmetric interval, where the coefficient f is a regular odd function that has only a simple zero at the origin. The operator L is closely related to a remarkable model examined by Davies in 2007, which exhibits surprising spectral properties balancing symmetries and strong non-selfadjointness. In our main result, we derive a concrete construction of classical pseudo-modes for L and give explicit exponential bounds of growth for the resolvent norm in rays away from the spectrum.
引用
收藏
页码:557 / 595
页数:39
相关论文
共 50 条
  • [41] Properties of the solutions of the fourth-order Bessel-type differential equation
    Everitt, W. N.
    Markett, C.
    Littlejohn, L. L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (01) : 252 - 264
  • [42] Bessel-type asymptotic expansions via the Riemann-Hilbert approach
    Wang, Z
    Wong, R
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2061): : 2839 - 2856
  • [43] Direct spatiotemporal measurements of accelerating ultrashort Bessel-type light bullets
    Valtna-Lukner, Heli
    Bowlan, Pamela
    Lohmus, Madis
    Piksarv, Peeter
    Trebino, Rick
    Saari, Peeter
    OPTICS EXPRESS, 2009, 17 (17): : 14948 - 14955
  • [44] Matrix Sturm-Liouville equation with a Bessel-type singularity on a finite interval
    Bondarenko, Natalia
    ANALYSIS AND MATHEMATICAL PHYSICS, 2017, 7 (01) : 77 - 92
  • [45] Additional spectral properties of the fourth-order Bessel-type differential equation
    Everitt, WN
    Kalf, H
    Littlejohn, LL
    Markett, C
    MATHEMATISCHE NACHRICHTEN, 2005, 278 (12-13) : 1538 - 1549
  • [46] Defect Distributions Related to Weakly Convergent Sequences in Bessel-Type Spaces H
    Aleksic, Jelena
    Pilipovic, Stevan
    Vojnovic, Ivana
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (03)
  • [47] Pseudospectrum of a bounded operator family
    Harrabi, A
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (06): : 671 - 680
  • [48] Inverse problems for the matrix Sturm-Liouville equation with a Bessel-type singularity
    Bondarenko, Natalia P.
    APPLICABLE ANALYSIS, 2018, 97 (07) : 1209 - 1222
  • [49] The condition pseudospectrum of a operator pencil
    Ammar, Aymen
    Jeribi, Aref
    Mahfoudhi, Kamel
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (04)
  • [50] Condensation of two-dimensional harmonically confined bosons with Bessel-type interactions
    Mese, A. I.
    Capuzzi, P.
    Aktas, S.
    Akdeniz, Z.
    Okan, S. E.
    PHYSICAL REVIEW A, 2011, 84 (04)