A multivariate spatial and spatiotemporal ARCH Model

被引:2
|
作者
Otto, Philipp [1 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow, Scotland
关键词
Conditional heteroscedasticity; Multivariate spatiotemporal data; QML estimator; Real-estate prices; Volatility clustering; MAXIMUM LIKELIHOOD ESTIMATORS; IDENTIFICATION; UNIVARIATE;
D O I
10.1016/j.spasta.2024.100823
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper introduces a multivariate spatiotemporal autoregressive conditional heteroscedasticity (ARCH) model based on a vec-representation. The model includes instantaneous spatial autoregressive spill -over effects, as they are usually present in geo-referenced data. Furthermore, spatial and temporal cross -variable effects in the conditional variance are explicitly modelled. We transform the model to a multivariate spatiotemporal autoregressive model using a logsquared transformation and derive a consistent quasi -maximum -likelihood estimator (QMLE). For finite samples and different error distributions, the performance of the QMLE is analysed in a series of Monte -Carlo simulations. In addition, we illustrate the practical usage of the new model with a real -world example. We analyse the monthly real-estate price returns for three different property types in Berlin from 2002 to 2014. We find weak (instantaneous) spatial interactions, while the temporal autoregressive structure in the market risks is of higher importance. Interactions between the different property types only occur in the temporally lagged variables. Thus, we see mainly temporal volatility clusters and weak spatial volatility spillovers.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Stochastic properties of spatial and spatiotemporal ARCH models
    Philipp Otto
    Wolfgang Schmid
    Robert Garthoff
    Statistical Papers, 2021, 62 : 623 - 638
  • [2] Stochastic properties of spatial and spatiotemporal ARCH models
    Otto, Philipp
    Schmid, Wolfgang
    Garthoff, Robert
    STATISTICAL PAPERS, 2021, 62 (02) : 623 - 638
  • [3] A spatiotemporal model for multivariate occupancy data
    Hepler, Staci A.
    Erhardt, Robert J.
    ENVIRONMETRICS, 2021, 32 (02)
  • [4] Multivariate Varying Coefficient Spatiotemporal Model
    Qian Q.
    Nguyen D.V.
    Kürüm E.
    Rhee C.M.
    Banerjee S.
    Li Y.
    Şentürk D.
    Statistics in Biosciences, 2024, 16 (3) : 761 - 786
  • [5] spGARCH: An R-Package for Spatial and Spatiotemporal ARCH and GARCH models
    Otto, Philipp
    R JOURNAL, 2019, 11 (02): : 401 - 420
  • [6] A simple multivariate ARCH model specified by random coefficients
    Fong, P. W.
    Li, W. K.
    An, Hong-Zhi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) : 1779 - 1802
  • [7] Multivariate Hawkes processes with spatial covariates for spatiotemporal event data analysis
    Li, Chenlong
    Cui, Kaiyan
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2024, 76 (04) : 535 - 578
  • [8] NEW PARSIMONIOUS MULTIVARIATE SPATIAL MODEL: SPATIAL ENVELOPE
    Rekabdarkolaee, Hossein Moradi Rekabdarkolaee Moradi
    Wang, Qin
    Naji, Zahra
    Fuentes, Montserrat
    STATISTICA SINICA, 2020, 30 (03) : 1583 - 1604
  • [9] A spatial model for multivariate lattice data
    Sain, Stephan R.
    Cressie, Noel
    JOURNAL OF ECONOMETRICS, 2007, 140 (01) : 226 - 259
  • [10] Modelling subset multivariate ARCH model via the AIC principle
    安鸿志
    FONG P.W.
    LIW.K.
    Science China Mathematics, 2002, (09) : 1089 - 1099