Optimizing the design of birefringent metasurfaces with deep learning neural networks

被引:0
|
作者
Xu, Athena [1 ]
Semnani, Behrooz [1 ]
Houk, Anna Maria [1 ]
Soltani, Mohammad [1 ]
Treacy, Jacqueline [1 ]
Bajcsy, Michal [1 ]
机构
[1] Univ Waterloo, IQC, Waterloo, ON, Canada
关键词
Metasurface; Deep Learning; Inverse Design; Artificial Neural Networks; Nanophotonics;
D O I
10.1117/12.3000591
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Metasurface presents itself as a method to create flat optical devices that generate customizable wavefronts at the nanoscale. The traditional metasurface design process involves solving Maxwell's equations through forward simulations and implementing trial-and-error to achieve the desired spectral response. This approach is computationally expensive and typically requires multiple iterations. In this study, we propose a reverse engineering solution that utilizes a deep learning artificial neural network (DNN). The ideal phase and transmission spectrums are inputted into the neural network, and the predicted dimensions which correspond to these spectrums are outputted by the network. The prediction process is less computationally expensive than forward simulations and is orders of magnitude faster to execute. Our neural network aims to identify the dimensions of elliptical nanopillars that will create the ideal phase response with a near unity transmission in a 20 nm wavelength interval surrounding the center wavelength of the spectral response. We have trained such a reverse DNN to predict the optimal dimensions for a birefringent metasurface composed of elliptical nanopillars.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Online Deep Learning: Learning Deep Neural Networks on the Fly
    Sahoo, Doyen
    Pham, Quang
    Lu, Jing
    Hoi, Steven C. H.
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2660 - 2666
  • [22] Deep relaxation: partial differential equations for optimizing deep neural networks
    Pratik Chaudhari
    Adam Oberman
    Stanley Osher
    Stefano Soatto
    Guillaume Carlier
    Research in the Mathematical Sciences, 2018, 5
  • [23] Deep relaxation: partial differential equations for optimizing deep neural networks
    Chaudhari, Pratik
    Oberman, Adam
    Osher, Stanley
    Soatto, Stefano
    Carlier, Guillaume
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2018, 5 : 1 - 30
  • [24] Dynamic multifunctional metasurfaces: an inverse design deep learning approach
    ZHI-DAN LEI
    YI-DUO XU
    CHENG LEI
    YAN ZHAO
    DU WANG
    Photonics Research, 2024, 12 (01) : 123 - 133
  • [25] Dynamic multifunctional metasurfaces: an inverse design deep learning approach
    Lei, Zhi-dan
    Xu, Yi-duo
    Lei, Cheng
    Zhao, Yan
    Wang, Du
    PHOTONICS RESEARCH, 2024, 12 (01) : 123 - 133
  • [26] Learning with Deep Photonic Neural Networks
    Leelar, Bhawani Shankar
    Shivaleela, E. S.
    Srinivas, T.
    2017 IEEE WORKSHOP ON RECENT ADVANCES IN PHOTONICS (WRAP), 2017,
  • [27] Deep Learning with Random Neural Networks
    Gelenbe, Erol
    Yin, Yongha
    PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 2, 2018, 16 : 450 - 462
  • [28] Deep Learning with Random Neural Networks
    Gelenbe, Erol
    Yin, Yongha
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1633 - 1638
  • [29] Deep learning in spiking neural networks
    Tavanaei, Amirhossein
    Ghodrati, Masoud
    Kheradpisheh, Saeed Reza
    Masquelier, Timothee
    Maida, Anthony
    NEURAL NETWORKS, 2019, 111 : 47 - 63
  • [30] Deep learning in neural networks: An overview
    Schmidhuber, Juergen
    NEURAL NETWORKS, 2015, 61 : 85 - 117