Multigenerational Effects of Elevated CO2 and N Supply on Leaf Gas Exchange Traits in Wheat Plants

被引:0
|
作者
Wang, Xizi [1 ]
Rosenqvist, Eva [1 ]
Zong, Yuzheng [2 ]
Li, Xiangnan [3 ]
Liu, Fulai [1 ]
机构
[1] Univ Copenhagen, Fac Sci, Dept Plant & Environm Sci, Copenhagen, Denmark
[2] Shanxi Agricultrual Univ, Coll Agr, Taigu, Shanxi, Peoples R China
[3] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Key Lab Mollisols Agroecol, Changchun, Peoples R China
关键词
elevated carbon dioxide; maternal effects; multiple generations; nitrogen supply; photosynthesis; wheat; PHOTOSYNTHETIC ACCLIMATION; ATMOSPHERIC CO2; CARBON-DIOXIDE; PARENTAL CO2; POA ANNUA; GROWTH; NITROGEN; LIMITATION; C-3; ENRICHMENT;
D O I
10.1111/jac.12722
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The responses of leaf gas exchange of wheat (Triticum aestivum L.) to elevated atmospheric CO2 concentration (e[CO2]) were often investigated within a single generation, while the long-term acclimation of photosynthesis to growth in e[CO2] over multiple generations has not been systematically studied. Here, five wheat cultivars were grown under either ambient (a[CO2], 400 ppm) or elevated (e[CO2], 800 ppm) CO2 concentration for three consecutive generations (G1 to G3) with two N-fertilisation levels (1N-1 g N pot(-1) and 2N-2 g N pot(-1)) in climate-controlled greenhouses. Leaf gas exchange was determined in each generation of plants under different treatments. It was found that at both N levels, e[CO2] stimulated photosynthetic rate while reducing stomatal conductance, transpiration rate and leaf N concentration, resulting in an enhanced water use efficiency and photosynthetic N use efficiency. The N level modulated the intergenerational responses of photosynthetic capacity to e[CO2]; under low N supply, the maximum carboxylation rate (V-cmax), the maximum electron transport rate (J(max)) and the rate of triose phosphate utilisation (TPU) were significantly downregulated by e[CO2] from the first to the second generation, but recovered in the third generation; whereas at high N levels, photosynthetic acclimation was diminished with the progress of generations, with V-cmax, J(max) and TPU increased under e[CO2] in the third generation. These results suggest that intergenerational adaptation could alleviate the e[CO2]-induced reduction of the photosynthetic capacity, but plants with different N status responded differently to adapt to the long-term exposure to e[CO2]. Among the five cultivars, 325Jimai showed a better photosynthetic performance under e[CO2] over the three generations, while 02-1Shiluan appeared to be more inhibited by CO2 elevation in the long term conditions. These findings provide new insights for breeding strategies in the future CO2-enriched environments.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Growth and Leaf Gas Exchange in Three Birch Species Exposed to Elevated Ozone and CO2 in Summer
    Hoshika, Yasutomo
    Watanabe, Makoto
    Inada, Naoki
    Koike, Takayoshi
    WATER AIR AND SOIL POLLUTION, 2012, 223 (08): : 5017 - 5025
  • [32] Growth and Leaf Gas Exchange in Three Birch Species Exposed to Elevated Ozone and CO2 in Summer
    Yasutomo Hoshika
    Makoto Watanabe
    Naoki Inada
    Takayoshi Koike
    Water, Air, & Soil Pollution, 2012, 223 : 5017 - 5025
  • [33] THE INFLUENCE OF ELEVATED CO2 ON GROWTH AND AGE-RELATED-CHANGES IN LEAF GAS-EXCHANGE
    PEARSON, M
    BROOKS, GL
    JOURNAL OF EXPERIMENTAL BOTANY, 1995, 46 (292) : 1651 - 1659
  • [34] EFFECTS OF ELEVATED CO2 AND CLIMATE VARIABLES ON PLANTS
    KIMBALL, BA
    MAUNEY, JR
    NAKAYAMA, FS
    IDSO, SB
    JOURNAL OF SOIL AND WATER CONSERVATION, 1993, 48 (01) : 9 - 14
  • [35] Effects of elevated CO2 on chloroplast components, gas exchange and growth of oak and cherry
    Atkinson, CJ
    Taylor, JM
    Wilkins, D
    Besford, RT
    TREE PHYSIOLOGY, 1997, 17 (05) : 319 - 325
  • [36] Impact studies on Nordic forests:: effects of elevated CO2 and fertilization on gas exchange
    Sigurdsson, BD
    Roberntz, P
    Freeman, M
    Næss, M
    Saxe, H
    Thorgeirsson, H
    Linder, S
    CANADIAN JOURNAL OF FOREST RESEARCH, 2002, 32 (05) : 779 - 788
  • [37] Effect of nitrogen application and elevated CO2 on photosynthetic gas exchange and electron transport in wheat leaves
    Zhang, X. C.
    Yu, X. F.
    Ma, Y. F.
    PHOTOSYNTHETICA, 2013, 51 (04) : 593 - 602
  • [38] Growth analysis for wheat grown under elevated CO2, ozone and enhanced N-supply
    Gruters, U
    Fangmeier, A
    Jager, HJ
    VERHANDLUNGEN DER GESELLSCHAFT FUR OKOLOGIE, VOL 27, 1997, : 283 - 293
  • [39] Elevated CO2 Suppresses the Vanadium Stress in Wheat Plants under the Future Climate CO2
    Alsherif, Emad A.
    AbdElgawad, Hamada
    PLANTS-BASEL, 2023, 12 (07):
  • [40] Zinc nutrition influences the CO2 gas exchange in wheat
    Fischer, ES
    Thimm, O
    Rengel, Z
    PHOTOSYNTHETICA, 1997, 33 (3-4) : 505 - 508