On the parameterized complexity of SPARSEST CUT and SMALL-SET EXPANSION problems

被引:0
|
作者
Javadi, Ramin [1 ,2 ]
Nikabadi, Amir [3 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, POB 84156-83111, Esfahan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[3] Univ Paris 09, Univ PSL, CNRS, LAMSADE, F-75016 Paris, France
关键词
Parameterized complexity; Sparsest Cut; Vertex cover; Treewidth; Small-set expansion; FIXED NUMBER;
D O I
10.1016/j.dam.2024.04.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a parameterized dichotomy for the k-SPARSEST CUT problem in weighted and unweighted versions. In particular, we show that the weighted k-SPARSEST CUT problem is NP-hard for every k >= 3 even on graphs with bounded vertex cover number. Also, the unweighted k-SPARSEST CUT problem is W[1]-hard when parameterized by the three combined parameters tree-depth, feedback vertex set number, and k. On the positive side, we show that the unweighted k-SPARSEST CUT problem is FPT when parameterized by the vertex cover number and k, and when k is fixed, it is FPT with respect to the treewidth. Moreover, we show that the generalized version kappa-SMALL-SET EXPANSION problem is FPT when parameterized by kappa and the maximum degree of the graph, though it is W[1]-hard for each of these parameters separately. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [41] Parameterized Complexity of Eulerian Deletion Problems
    Cygan, Marek
    Marx, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Schlotter, Ildiko
    ALGORITHMICA, 2014, 68 (01) : 41 - 61
  • [42] On miniaturized problems in parameterized complexity theory
    Chen, YJ
    Flum, J
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 108 - 120
  • [43] Parameterized Complexity of Eulerian Deletion Problems
    Marek Cygan
    Dániel Marx
    Marcin Pilipczuk
    Michał Pilipczuk
    Ildikó Schlotter
    Algorithmica, 2014, 68 : 41 - 61
  • [44] Parameterized complexity of constraint satisfaction problems
    Marx, D
    COMPUTATIONAL COMPLEXITY, 2005, 14 (02) : 153 - 183
  • [45] Parameterized Complexity of Weighted Target Set Selection
    Suzuki, Takahiro
    Kimura, Kei
    Suzuki, Akira
    Tamura, Yuma
    Zhou, Xiao
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2024, 2024, 14637 : 320 - 331
  • [46] Parameterized Complexity of Secluded Connectivity Problems
    Fomin, Fedor V.
    Golovach, Petr A.
    Karpov, Nikolay
    Kulikov, Alexander S.
    THEORY OF COMPUTING SYSTEMS, 2017, 61 (03) : 795 - 819
  • [47] Parameterized Complexity of Generalized Domination Problems
    Golovach, Petr A.
    Kratochvil, Jan
    Suchy, Ondrej
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 5911 : 133 - +
  • [48] A survey on the parameterized complexity of reconfiguration problems
    Bousquet, Nicolas
    Mouawad, Amer E.
    Nishimura, Naomi
    Siebertz, Sebastian
    COMPUTER SCIENCE REVIEW, 2024, 53
  • [49] Parameterized Complexity of Eulerian Deletion Problems
    Cygan, Marek
    Marx, Daniel
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Schlotter, Ildiko
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2011, 6986 : 131 - +
  • [50] Parameterized Complexity of Directed Spanner Problems
    Fomin, Fedor, V
    Golovach, Petr A.
    Lochet, William
    Misra, Pranabendu
    Saurabh, Saket
    Sharma, Roohani
    ALGORITHMICA, 2022, 84 (08) : 2292 - 2308