Winter Wheat Mapping in Shandong Province of China with Multi-Temporal Sentinel-2 Images

被引:1
|
作者
Feng, Yongyu [1 ]
Chen, Bingyao [2 ]
Liu, Wei [3 ]
Xue, Xiurong [1 ]
Liu, Tongqing [2 ]
Zhu, Linye [4 ]
Xing, Huaqiao [5 ,6 ]
机构
[1] Shandong Geog Inst Land Spatial Data & Remote Sens, Jinan 250002, Peoples R China
[2] Shandong Coal Geol Bur, Prospecting Team 5, Jinan 250100, Peoples R China
[3] Shandong Yuanhong Survey Planning & Design Co Ltd, Jinan 250014, Peoples R China
[4] China Univ Min & Technol Beijing, Coll Geosci & Surveying Engn, Beijing 102206, Peoples R China
[5] Shandong Jianzhu Univ, Sch Surveying & Geoinformat, Jinan 250101, Peoples R China
[6] Shandong Prov Educ Dept, Key Lab Digital Simulat Spatial Design Architectur, Jinan 250101, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 09期
关键词
winter wheat; Sentinel-2; fusion method; Google Earth Engine; Shandong Province; TIME-SERIES; CULTIVATED LAND; CROPLAND EXTENT; SCALE; CLASSIFICATION;
D O I
10.3390/app14093940
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wheat plays an important role in China's and the world's food supply, and it is closely related to economy, culture and life. The spatial distribution of wheat is of great significance to the rational planning of wheat cultivation areas and the improvement of wheat yield and quality. The current rapid development of remote sensing technology has greatly improved the efficiency of traditional agricultural surveys. The extraction of crop planting structure based on remote sensing images and technology is a popular topic in many researches. In response to the shortcomings of traditional methods, this research proposed a method based on the fusion of the pixel-based and object-oriented methods to map the spatial distribution of winter wheat. This method was experimented and achieved good results within Shandong Province. The resulting spatial distribution map of winter wheat has an overall accuracy of 92.2% with a kappa coefficient of 0.84. The comparison with the actual situation shows that the accuracy of the actual recognition of winter wheat is higher and better than the traditional pixel-based classification method. On this basis, the spatial pattern of winter wheat in Shandong was analyzed, and it was found that the topographic undulations had a great influence on the spatial distribution of wheat. This study vividly demonstrates the advantages and possibilities of combining pixel-based and object-oriented approaches through experiments, and also provides a reference for the next related research. Moreover, the winter wheat map of Shandong produced in this research is important for yield assessment, crop planting structure adjustment and the rational use of land resources.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] FARM: A fully automated rice mapping framework combining Sentinel-1 SAR and Sentinel-2 multi-temporal imagery
    Gao, Yuan
    Pan, Yaozhong
    Zhu, Xiufang
    Li, Le
    Ren, Shoujia
    Zhao, Chuanwu
    Zheng, Xuechang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 213
  • [42] Combined Use of Multi-Temporal Landsat-8 and Sentinel-2 Images for Wheat Yield Estimates at the Intra-Plot Spatial Scale
    Fieuzal, Remy
    Bustillo, Vincent
    Collado, David
    Dedieu, Gerard
    AGRONOMY-BASEL, 2020, 10 (03):
  • [43] Winter Wheat Mapping Based on Sentinel-2 Data in Heterogeneous Planting Conditions
    Zhang, Dongyan
    Fang, Shengmei
    She, Bao
    Zhang, Huihui
    Jin, Ning
    Xia, Haoming
    Yang, Yuying
    Ding, Yang
    REMOTE SENSING, 2019, 11 (22)
  • [44] Mapping an Urban Boundary Based on Multi-Temporal Sentinel-2 and POI Data: A Case Study of Zhengzhou City
    Wang, Zhe
    Wang, Haiying
    Qin, Fen
    Han, Zhigang
    Miao, Changhong
    REMOTE SENSING, 2020, 12 (24) : 1 - 19
  • [45] Forest Land Cover Mapping at a Regional Scale Using Multi-Temporal Sentinel-2 Imagery and RF Models
    Alonso, Laura
    Picos, Juan
    Armesto, Julia
    REMOTE SENSING, 2021, 13 (12)
  • [46] Extracting Coastal Water Depths from Multi-Temporal Sentinel-2 Images Using Convolutional Neural Networks
    Lumban-Gaol, Yustisi
    Ohori, Ken Arroyo
    Peters, Ravi
    MARINE GEODESY, 2022, 45 (06) : 615 - 644
  • [47] High Level Synthesis Acceleration of Change Detection in Multi-Temporal High Resolution Sentinel-2 Satellite Images
    Koliogeorgi, Konstantina
    Mylonakis, Dimitris
    Xydis, Sotirios
    Soudris, Dimitrios
    PROCEEDINGS OF THE 2022 IFIP/IEEE 30TH INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION (VLSI-SOC), 2022,
  • [48] A Modified Swin-UNet Model for Coastal Wetland Classification Using Multi-Temporal Sentinel-2 Images
    Binyu Wang
    Yuanheng Sun
    Xueyuan Zhu
    Senlin Teng
    Ying Li
    Estuaries and Coasts, 2025, 48 (3)
  • [49] A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 images
    Hagolle, O.
    Huc, M.
    Pascual, D. Villa
    Dedieu, G.
    REMOTE SENSING OF ENVIRONMENT, 2010, 114 (08) : 1747 - 1755
  • [50] Multi-Temporal Evaluation of Quantitative and Phenological Vegetation Dynamics Using Sentinel-2 Images in North Horr (Kenya)
    Bigi, Velia
    Vigna, Ingrid
    Pezzoli, Alessandro
    Comino, Elena
    SUSTAINABILITY, 2021, 13 (24)