Polygenic hazard score models for the prediction of Alzheimer's free survival using the lasso for Cox's proportional hazards model

被引:2
|
作者
Hahn, Georg [1 ]
Prokopenko, Dmitry [2 ]
Hecker, Julian [3 ,4 ]
Lutz, Sharon M. [1 ]
Mullin, Kristina [2 ]
Tanzi, Rudolph E. [2 ]
Desantis, Stacia [5 ]
Lange, Christoph [1 ]
机构
[1] Harvard TH Chan Sch Publ Hlth, 677 Huntington Ave, Boston, MA 02115 USA
[2] Massachusetts Gen Hosp, McCance Ctr Brain Hlth, Dept Neurol, Genet & Aging Res Unit, Boston, MA USA
[3] Brigham & Womens Hosp, Channing Div Network Med, Boston, MA USA
[4] Harvard Med Sch, Boston, MA USA
[5] Univ Texas Hlth Sci Ctr, Houston, TX USA
基金
加拿大健康研究院; 美国国家卫生研究院; 美国国家科学基金会;
关键词
Alzheimer; Cox proportional hazard; lasso; penalized regression; survival; ADAPTIVE LASSO; RISK; REGRESSION; DISEASE; SELECTION;
D O I
10.1002/gepi.22581
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The prediction of the susceptibility of an individual to a certain disease is an important and timely research area. An established technique is to estimate the risk of an individual with the help of an integrated risk model, that is, a polygenic risk score with added epidemiological covariates. However, integrated risk models do not capture any time dependence, and may provide a point estimate of the relative risk with respect to a reference population. The aim of this work is twofold. First, we explore and advocate the idea of predicting the time-dependent hazard and survival (defined as disease-free time) of an individual for the onset of a disease. This provides a practitioner with a much more differentiated view of absolute survival as a function of time. Second, to compute the time-dependent risk of an individual, we use published methodology to fit a Cox's proportional hazard model to data from a genetic SNP study of time to Alzheimer's disease (AD) onset, using the lasso to incorporate further epidemiological variables such as sex, APOE (apolipoprotein E, a genetic risk factor for AD) status, 10 leading principal components, and selected genomic loci. We apply the lasso for Cox's proportional hazards to a data set of 6792 AD patients (composed of 4102 cases and 2690 controls) and 87 covariates. We demonstrate that fitting a lasso model for Cox's proportional hazards allows one to obtain more accurate survival curves than with state-of-the-art (likelihood-based) methods. Moreover, the methodology allows one to obtain personalized survival curves for a patient, thus giving a much more differentiated view of the expected progression of a disease than the view offered by integrated risk models. The runtime to compute personalized survival curves is under a minute for the entire data set of AD patients, thus enabling it to handle datasets with 60,000-100,000 subjects in less than 1 h.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Discrete Bayesian Network Interpretation of the Cox's Proportional Hazards Model
    Kraisangka, Jidapa
    Druzdzel, Marek J.
    PROBABILISTIC GRAPHICAL MODELS, 2014, 8754 : 238 - 253
  • [32] SICA for Cox's proportional hazards model with a diverging number of parameters
    Shi, Yue-Yong
    Cao, Yong-Xiu
    Jiao, Yu-Ling
    Liu, Yan-Yan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (04): : 887 - 902
  • [33] Penalized Cox’s proportional hazards model for high-dimensional survival data with grouped predictors
    Xuan Dang
    Shuai Huang
    Xiaoning Qian
    Statistics and Computing, 2021, 31
  • [34] A real survival analysis application via variable selection methods for Cox's proportional hazards model
    Androulakis, Emmanouil
    Koukouvinos, Christos
    Mylona, Kalliopi
    Vonta, Filia
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (08) : 1399 - 1406
  • [35] Penalized Cox's proportional hazards model for high-dimensional survival data with grouped predictors
    Dang, Xuan
    Huang, Shuai
    Qian, Xiaoning
    STATISTICS AND COMPUTING, 2021, 31 (06)
  • [36] Assessing Performance and Clinical Usefulness in Prediction Models With Survival Outcomes: Practical Guidance for Cox Proportional Hazards Models
    McLernon, David J.
    Giardiello, Daniele
    Van Calster, Ben
    Wynants, Laure
    van Geloven, Nan
    van Smeden, Maarten
    Therneau, Terry
    Steyerberg, Ewout W.
    STRATOS Initiative
    ANNALS OF INTERNAL MEDICINE, 2023, 176 (01) : 105 - +
  • [37] Polygenic hazard score: an enrichment marker for Alzheimer’s associated amyloid and tau deposition
    Chin Hong Tan
    Chun Chieh Fan
    Elizabeth C. Mormino
    Leo P. Sugrue
    Iris J. Broce
    Christopher P. Hess
    William P. Dillon
    Luke W. Bonham
    Jennifer S. Yokoyama
    Celeste M. Karch
    James B. Brewer
    Gil D. Rabinovici
    Bruce L. Miller
    Gerard D. Schellenberg
    Karolina Kauppi
    Howard A. Feldman
    Dominic Holland
    Linda K. McEvoy
    Bradley T. Hyman
    David A. Bennett
    Ole A. Andreassen
    Anders M. Dale
    Rahul S. Desikan
    Acta Neuropathologica, 2018, 135 : 85 - 93
  • [38] Risk factors for psychosis in Parkinson's disease: Cohort stud) using Cox proportional hazards models
    Yamamoto, K.
    Oeda, T.
    Sawada, H.
    MOVEMENT DISORDERS, 2009, 24 : S133 - S134
  • [39] Assessment of a polygenic hazard score for the onset of pre-clinical Alzheimer's disease
    Vacher, Michael
    Dore, Vincent
    Porter, Tenielle
    Milicic, Lidija
    Villemagne, Victor L.
    Bourgeat, Pierrick
    Burnham, Sam C.
    Cox, Timothy
    Masters, Colin L.
    Rowe, Christopher C.
    Fripp, Jurgen
    Doecke, James D.
    Laws, Simon M.
    BMC GENOMICS, 2022, 23 (01)
  • [40] Polygenic hazard score: an enrichment marker for Alzheimer's associated amyloid and tau deposition
    Tan, Chin Hong
    Fan, Chun Chieh
    Mormino, Elizabeth C.
    Sugrue, Leo P.
    Broce, Iris J.
    Hess, Christopher P.
    Dillon, William P.
    Bonham, Luke W.
    Yokoyama, Jennifer S.
    Karch, Celeste M.
    Brewer, James B.
    Rabinovici, Gil D.
    Miller, Bruce L.
    Schellenberg, Gerard D.
    Kauppi, Karolina
    Feldman, Howard A.
    Holland, Dominic
    McEvoy, Linda K.
    Hyman, Bradley T.
    Bennett, David A.
    Andreassen, Ole A.
    Dale, Anders M.
    Desikan, Rahul S.
    ACTA NEUROPATHOLOGICA, 2018, 135 (01) : 85 - 93