Heat pipe/phase change material passive thermal management of power battery packs under different driving modes

被引:2
|
作者
Bian, Xiangfen [1 ]
Tao, Hanzhong [1 ]
Li, Yannan [1 ]
Chu, Zhiliang [1 ]
Bai, Xiaoyue [1 ]
Xian, Yupeng [1 ]
Yang, Lu [1 ]
Zhang, Ziying [1 ]
机构
[1] Nanjing Tech Univ, Sch Energy Sci & Engn, Nanjing 211816, Peoples R China
关键词
Battery Module; Heat pipe; Phase change material; BTM; Dynamic road conditions; PHASE-CHANGE MATERIAL; PERFORMANCE; SYSTEM;
D O I
10.1016/j.applthermaleng.2024.123172
中图分类号
O414.1 [热力学];
学科分类号
摘要
In Fluent's study of battery thermal dissipation in real driving mode. A passive battery thermal management (BTM) strategy based on heat pipe/phase change material (HP/PCM) coupling is proposed. The effects of different PCMs (including RT-31 and Paraffine-EG), HP, coupling systems, and different driving conditions (including constant speed, hill climbing, and dynamic driving) on the thermal behavior of the battery module are investigated. The results showed that: (1) the two coupling systems, HP/RT-31 and HP/Paraffin-EG, have lower battery surface temperatures and better overall temperature uniformity compared to the no HP/PCM, HP alone, and PCM alone. Battery maximum temperatures were reduced by more than 10 % compared to no HP/PCM. The temperature reductions were 1.48 K and 0.67 K compared to HP only, and 3.1 K and 3.4 K compared to RT-31 only and Paraffin-EG only, respectively. Where HP dominated the reduction of the maximum temperature, and PCM played a key role in maintaining temperature uniformity. (2) Under different uniform driving conditions, the coupling system exhibits more significant temperature reduction at higher speeds, with a maximum temperature reduction of 13.9 % at 120 km/h driving. (3) Uphill driving in high temps lowers resistance, boosts electrochemical activity, slows temp rise, and reduces temperature difference. The passive thermal management system designed in this paper, not only makes the battery temperature rise effectively but also has important significance in improving energy utilization and reducing the additional energy consumption of power batteries.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures
    Liang, Jialin
    Gan, Yunhua
    Li, Yong
    ENERGY CONVERSION AND MANAGEMENT, 2018, 155 : 1 - 9
  • [32] Investigation on the thermal performance of a dual driving force heat pipe under different working modes for thermal storage enhancement application
    Liu, Kaibao
    Chen, He
    Gan, Haolin
    Liu, Changhui
    Zhao, Jiateng
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 53
  • [33] Passive thermal management using metal foam saturated with phase change material in a heat sink
    Qu, Z. G.
    Li, W. Q.
    Wang, J. L.
    Tao, W. Q.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (10) : 1546 - 1549
  • [34] Experimental Investigation of Composite Phase Change Material Heat Sinks for Enhanced Passive Thermal Management
    Miers, Collier S.
    Marconnet, Amy
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2021, 143 (01):
  • [35] Influence of phase change material dosage on the heat dissipation performance of the battery thermal management system
    Zhang, Wencan
    Liang, Zhicheng
    Ling, Guozhi
    Huang, Liansheng
    JOURNAL OF ENERGY STORAGE, 2021, 41
  • [36] Battery heat dissipation performance based on composite phase change material-heat pipe
    Huang L.
    Qi Y.
    Wang Y.
    Jiang S.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (11): : 5680 - 5688
  • [37] A novel compact battery thermal management system comprising phase change material, mini-channels, and fins suitable for EV battery packs
    Hekmat, S.
    Tavana, P.
    Molaeimanesh, G. R.
    JOURNAL OF ENERGY STORAGE, 2024, 82
  • [38] A copper nanoparticle enhanced phase change material with high thermal conductivity and latent heat for battery thermal management
    Ma, Chuyuan
    Zhang, Ying
    Hu, Sihang
    Liu, Xiaojie
    He, Song
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [39] Experimental and numerical study on the cooling performance of heat pipe assisted composite phase change material-based battery thermal management system
    Feng, Renlang
    Huang, Peifeng
    Tang, Ziyi
    He, Yanyun
    Bai, Zhonghao
    ENERGY CONVERSION AND MANAGEMENT, 2022, 272
  • [40] Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures
    Ling, Ziye
    Wen, Xiaoyan
    Zhang, Zhengguo
    Fang, Xiaoming
    Gao, Xuenong
    ENERGY, 2018, 144 : 977 - 983