PI-NeRF: A Partial-Invertible Neural Radiance Fields for Pose Estimation

被引:2
|
作者
Li, Zhihao [1 ]
Fu, Kexue [2 ]
Wang, Haoran [1 ]
Wang, Manning [1 ]
机构
[1] Fudan Univ, Shanghai Key Lab Med Image Comp & Comp Assisted I, Digital Med Res Ctr, Shanghai, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Shandong Comp Sci Ctr, Natl Supercomp Ctr Jinan, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
Pose Estimation; Invertible Neural Network; Neural Radiance Fields;
D O I
10.1145/3581783.3612590
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, Neural Radiance Fields (NeRF) have been used as a map of 3D scene to estimate the 6-DoF pose of new observed images -given an image, estimate the relative rotation and translation of a camera using a trained NeRF. However, existing NeRF-based pose estimation methods have a small convergence region and need to be optimized iteratively over a given initial pose, which makes them slow and sensitive to the initial pose. In this paper, we propose PI-NeRF that directly outputs the pose of a given image without pose initialization and iterative optimization. This is achieved by integrating NeRF with invertible neural network (INN). Our method employs INNs to establish a bijective mapping between the rays and pixel features, which allows us to directly estimate the ray corresponding to each image pixel using the feature map extracted by an image encoder. Based on these rays, we can directly estimate the pose of the image using the PnP algorithm. Experiments conducted on both synthetic and real-world datasets demonstrate that our method is two orders of magnitude faster than existing NeRF-based methods, while the accuracy is competitive without initial pose. The accuracy of our method also outperforms NeRF-free absolute pose regression methods by a large margin.
引用
收藏
页码:7826 / 7836
页数:11
相关论文
共 50 条
  • [21] Deblur-NeRF: Neural Radiance Fields from Blurry Images
    Ma, Li
    Li, Xiaoyu
    Liao, Jing
    Zhang, Qi
    Wang, Xuan
    Wang, Jue
    Sander, Pedro, V
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 12851 - 12860
  • [22] HDR-NeRF: High Dynamic Range Neural Radiance Fields
    Huang, Xin
    Zhang, Qi
    Feng, Ying
    Li, Hongdong
    Wang, Xuan
    Wang, Qing
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 18377 - 18387
  • [23] NeRF-MS: Neural Radiance Fields with Multi-Sequence
    Li, Peihao
    Wang, Shaohui
    Yang, Chen
    Liu, Bingbing
    Qiu, Weichao
    Wang, Haoqian
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18545 - 18554
  • [24] NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects
    Yan, Zhiwen
    Li, Chen
    Lee, Gim Hee
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 8285 - 8295
  • [25] NeRF-QA: Neural Radiance Fields Quality Assessment Database
    Martin, Pedro
    Rodrigues, Antonio
    Ascenso, Joao
    Queluz, Maria Paula
    2023 15TH INTERNATIONAL CONFERENCE ON QUALITY OF MULTIMEDIA EXPERIENCE, QOMEX, 2023, : 107 - 110
  • [26] Tetra-NeRF: Representing Neural Radiance Fields Using Tetrahedra
    Kulhanek, Jonas
    Sattler, Torsten
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 18412 - 18423
  • [27] CaSE-NeRF: Camera Settings Editing of Neural Radiance Fields
    Sun, Ciliang
    Li, Yuqi
    Li, Jiabao
    Wang, Chong
    Dai, Xinmiao
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT II, 2024, 14496 : 95 - 107
  • [28] NeRF-DA: Neural Radiance Fields Deblurring With Active Learning
    Hong, Sejun
    Kim, Eunwoo
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 261 - 265
  • [29] BAD-NeRF: Bundle Adjusted Deblur Neural Radiance Fields
    Wang, Peng
    Zhao, Lingzhe
    Ma, Ruijie
    Liu, Peidong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 4170 - 4179
  • [30] FoV-NeRF: Foveated Neural Radiance Fields for Virtual Reality
    Deng, Nianchen
    He, Zhenyi
    Ye, Jiannan
    Duinkharjav, Budmonde
    Chakravarthula, Praneeth
    Yang, Xubo
    Sun, Qi
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (11) : 3854 - 3864