Sparse Graph Neural Networks with Scikit-Network

被引:0
|
作者
Delarue, Simon [1 ]
Bonald, Thomas [1 ]
机构
[1] Inst Polytechn Paris, Paris, France
关键词
Graph Neural Networks; Sparse Matrices; !text type='Python']Python[!/text;
D O I
10.1007/978-3-031-53468-3_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, Graph Neural Networks (GNNs) have undergone rapid development and have become an essential tool for building representations of complex relational data. Large real-world graphs, characterised by sparsity in relations and features, necessitate dedicated tools that existing dense tensor-centred approaches cannot easily provide. To address this need, we introduce a GNNs module in Scikit-network, a Python package for graph analysis, leveraging sparse matrices for both graph structures and features. Our contribution enhances GNNs efficiency without requiring access to significant computational resources, unifies graph analysis algorithms and GNNs in the same framework, and prioritises user-friendliness.
引用
收藏
页码:16 / 24
页数:9
相关论文
共 50 条
  • [41] Enhancing Network Anomaly Detection Using Graph Neural Networks
    Marfo, William
    Tosh, Deepak K.
    Moore, Shirley V.
    2024 22ND MEDITERRANEAN COMMUNICATION AND COMPUTER NETWORKING CONFERENCE, MEDCOMNET 2024, 2024,
  • [42] BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks
    Cui, Hejie
    Dai, Wei
    Zhu, Yanqiao
    Kan, Xuan
    Gu, Antonio Aodong Chen
    Lukemire, Joshua
    Zhan, Liang
    He, Lifang
    Guo, Ying
    Yang, Carl
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (02) : 493 - 506
  • [43] RouteNet-Fermi: Network Modeling With Graph Neural Networks
    Ferriol-Galmes, Miquel
    Paillisse, Jordi
    Suarez-Varela, Jose
    Rusek, Krzysztof
    Xiao, Shihan
    Shi, Xiang
    Cheng, Xiangle
    Barlet-Ros, Pere
    Cabellos-Aparicio, Albert
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2023, 31 (06) : 3080 - 3095
  • [44] Graph Neural Networks with scattering transform for network anomaly detection
    Zoubir, Abdeljalil
    Missaoui, Badr
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 150
  • [45] Challenging the generalization capabilities of Graph Neural Networks for network modeling
    Suarez-Varela, Jose
    Carol-Bosch, Sergi
    Rusek, Krzysztof
    Almasan, Paul
    Arias, Marta
    Barlet-Ros, Pere
    Cabellos-Aparicio, Albert
    PROCEEDINGS OF THE 2019 ACM SIGCOMM CONFERENCE POSTERS AND DEMOS (SIGCOMM '19), 2019, : 114 - 115
  • [46] Learning Weight Signed Network Embedding with Graph Neural Networks
    Zekun Lu
    Qiancheng Yu
    Xia Li
    Xiaoning Li
    Qinwen Yang
    Data Science and Engineering, 2023, 8 : 36 - 46
  • [47] A graph neural network framework for causal inference in brain networks
    S. Wein
    W. M. Malloni
    A. M. Tomé
    S. M. Frank
    G. -I. Henze
    S. Wüst
    M. W. Greenlee
    E. W. Lang
    Scientific Reports, 11
  • [48] A survey of graph neural network based recommendation in social networks
    Li, Xiao
    Sun, Li
    Ling, Mengjie
    Peng, Yan
    NEUROCOMPUTING, 2023, 549
  • [49] Graph Neural Network for Higher-Order Dependency Networks
    Jin, Di
    Gong, Yingli
    Wang, Zhiqiang
    Yu, Zhizhi
    He, Dongxiao
    Huang, Yuxiao
    Wang, Wenjun
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 1622 - 1630
  • [50] Exploring the Limitations of Current Graph Neural Networks for Network Modeling
    Happ, Martin
    Du, Jia Lei
    Herlich, Matthias
    Maier, Christian
    Dorfinger, Peter
    Suarez-Varela, Jose
    PROCEEDINGS OF THE IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2022, 2022,