Upgrading waste tire to a carbon-based natural gas diffusion electrode for efficient H2O2 production

被引:1
|
作者
Wang, Jingwen [1 ]
Li, Chaolin [1 ,2 ]
Rauf, Muhammad [3 ]
Wang, Wenhui [1 ]
机构
[1] Harbin Inst Technol, Sch Civil & Environm Engn, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China
[3] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Waste tire; Gas diffusion electrode; Hydrogen peroxide; Two-electron oxygen reduction reaction; Carbon footprint; HYDROGEN-PEROXIDE; OXYGEN REDUCTION; FENTON; PERFORMANCE; CATHODE; BLACK; ELECTROGENERATION; ELECTROSYNTHESIS; GENERATION; RUBBER;
D O I
10.1016/j.jece.2024.112555
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbonaceous material, especially carbon black, is crucial in H2O2 production due to its exceptional catalytic properties. However, the traditional carbon black production process faces the challenges of significant CO2 emissions and high costs. To overcome these challenges, porous carbon nanoparticles (TPCNs) are derived from cheap, sustainable waste tires by a facile pyrolysis process, which is then used to fabricate a natural gas diffusion electrode (GDE) for efficient H2O2 electrogeneration. The obtained TPCNs are amorphous carbon with high graphitization, hierarchically porous architecture, and have high oxygen functional group content of C--O, C-OC, and COOH that are favorable for the high H2O2 selectivity. Hence, the fabricated TGDE exhibits efficient H2O2 electrogeneration of 694 mmol L-1 H2O2 concentration with 62% current efficiency after 60 min electrolysis without aeration. Moreover, this H2O2 production process utilizing waste tire can decrease by 19.6% CO2 emissions compared with that using commercial carbon black. This work proposes a protocol for the high-value reuse of waste tires and provides a sustainable carbon-based catalyst production for efficient H2O2 electrogeneration.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Electrosynthesis of H2O2 from O2 in gas diffusion electrodes for the preparation of organic peracids and the complex of H2O2 with urea
    Kolyagin, G. A.
    Kornienko, V. L.
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (02) : 185 - 189
  • [32] Electrosynthesis of H2O2 from O2 in gas diffusion electrodes for the preparation of organic peracids and the complex of H2O2 with urea
    G. A. Kolyagin
    V. L. Kornienko
    Russian Journal of Electrochemistry, 2015, 51 : 185 - 189
  • [33] Highly-efficient natural gas desulfurization and simultaneous H2O2 synthesis based on the electrochemical coupling reaction strategy
    Cui, Hanbo
    Zhou, Changhui
    Zhang, Yan
    Zhou, Tingsheng
    Xie, Chaoyue
    Li, Lei
    Wang, Jiachen
    Li, Jinhua
    Simchi, Abdolreza
    Bai, Jing
    Zhou, Baoxue
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 463
  • [34] P-doped melon-carbon nitride for efficient photocatalytic H2O2 production
    Xue, Lian
    Sun, Hao
    Wu, Qiang
    Yao, Weifeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 615 : 87 - 94
  • [35] P-doped melon-carbon nitride for efficient photocatalytic H2O2 production
    Xue, Lian
    Sun, Hao
    Wu, Qiang
    Yao, Weifeng
    Journal of Colloid and Interface Science, 2022, 615 : 87 - 94
  • [36] Fast and Stable Electrochemical Production of H2O2 by Electrode Architecture Engineering
    Xu, Wenwen
    Liang, Zheng
    Gong, Shun
    Zhang, Baoshan
    Wang, Hui
    Su, Linfeng
    Chen, Xu
    Han, Nana
    Tian, Ziqi
    Kallio, Tanja
    Chen, Liang
    Lu, Zhiyi
    Sun, Xiaoming
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (20) : 7120 - 7129
  • [37] Atomic-Level Co/Mesoporous Carbon Nanofibers for Efficient Electrochemical H2O2 Production
    Liu, Penghuan
    Li, Yicong
    Sun, Changchun
    Liu, Guiju
    Wang, Xiaohan
    Zhao, Haiguang
    ACS APPLIED NANO MATERIALS, 2025,
  • [38] Innovative Dual-Compartment Flow Reactor Coupled with a Gas Diffusion Electrode for in Situ Generation of H2O2
    Ding, Peipei
    Cui, Lele
    Li, Dan
    Jing, Wenheng
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (16) : 6925 - 6932
  • [39] Carbon-based H2-production photocatalytic materials
    Cao, Shaowen
    Yu, Jiaguo
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2016, 27 : 72 - 99
  • [40] Nonenzymatic H2O2 Sensor Based on Pt Nanoflower Electrode
    Jun Wan
    Weina Wang
    Guang Yin
    Xiuju Ma
    Journal of Cluster Science, 2012, 23 : 1061 - 1068