Genetic Algorithm-Driven Optimization for Enhanced Accessibility in Mobile Robotics

被引:0
|
作者
Torres, Gilbert Ace S. [1 ]
Calumba, Shaun Patrick [1 ]
Fajardo, Fermar [1 ]
Germar, Roschele Eguia [1 ]
De Luna, Robert G. [1 ]
Tan, Gerhard P. [1 ]
机构
[1] Polytech Univ Philippines, Manila, Philippines
关键词
Genetic Algorithm; Accessibility; Path Optimization; Mobile Robotics;
D O I
10.1109/ICCAR61844.2024.10569344
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This research explores the application of Genetic Algorithm (GA)-driven optimization to enhance accessibility in the realm of mobile robotics. The pivotal challenge addressed is the efficient optimization of robot paths, aiming to improve accessibility for diverse environments. Traditional path optimization methods often struggle with real-time adaptability and dynamic environmental changes. In response, our proposed genetic algorithm harnesses evolutionary principles to dynamically optimize paths, thereby contributing to the increased accessibility of mobile robots. Through simulations and experiments, we demonstrate the efficacy of the GA-driven optimization in accommodating diverse scenarios. The algorithm showcases its ability to adapt to changing conditions, ensuring not only optimal paths but also improved accessibility for users. The research sheds light on the potential applications of genetic algorithms in mobile robotics, paving the way for advancements in autonomous navigation with a focus on inclusivity and enhanced accessibility.
引用
收藏
页码:109 / 115
页数:7
相关论文
共 50 条
  • [31] Algorithm-driven Artifacts in median polish summarization of Microarray data
    Giorgi, Federico M.
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BMC BIOINFORMATICS, 2010, 11
  • [32] Digital literacy as a pathway to professional development in the algorithm-driven world
    Spurava, Guna
    Kotilainen, Sirkku
    [J]. NORDIC JOURNAL OF DIGITAL LITERACY, 2023, 18 (01) : 48 - 59
  • [33] Algorithm-driven Artifacts in median polish summarization of Microarray data
    Federico M Giorgi
    Anthony M Bolger
    Marc Lohse
    Bjoern Usadel
    [J]. BMC Bioinformatics, 11
  • [34] Cost and mortality impact of an algorithm-driven sepsis prediction system
    Calvert, Jacob
    Hoffman, Jana
    Barton, Christopher
    Shimabukuro, David
    Ries, Michael
    Chettipally, Uli
    Kerem, Yaniv
    Jay, Melissa
    Mataraso, Samson
    Das, Ritankar
    [J]. JOURNAL OF MEDICAL ECONOMICS, 2017, 20 (06) : 646 - 651
  • [35] Tuning pattern classifier parameters using a genetic algorithm with an application in mobile robotics
    Wang, JX
    Downs, T
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 581 - 586
  • [36] Enhanced Genetic Algorithm Applied for Global Optimization
    Ahmad, Fadzil
    Isa, Nor Ashidi Mat
    Hussain, Zakaria
    Yahaya, Saiful Zaimy
    Boudville, Rozan
    Rahman, Mohamad Faizal Abdul
    Saod, Aini Hafiza Mohd
    Saad, Zuraidi
    [J]. NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 : 198 - 205
  • [37] SiMul: An Algorithm-Driven Approximate Multiplier Design for Machine Learning
    Liu, Zhenhong
    Yazdanbakhsh, Amir
    Park, Taejoon
    Esmaeilzadeh, Hadi
    Kim, Nam Sung
    [J]. IEEE MICRO, 2018, 38 (04) : 50 - 59
  • [38] GenMin: An enhanced genetic algorithm for global optimization
    Tsoulos, Ioannis G.
    Lagaris, I. E.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2008, 178 (11) : 843 - 851
  • [39] An enhanced genetic algorithm for structural topology optimization
    Wang, SY
    Tai, K
    Wang, MY
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 65 (01) : 18 - 44
  • [40] An Enhanced Time-Reversal Imaging Algorithm-Driven Sparse Linear Array for Progressive and Quantitative Monitoring of Cracks
    Wang, Qiang
    Xu, Yanfeng
    Su, Zhongqing
    Cao, Maosen
    Yue, Dong
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (10) : 3433 - 3445