A Nonaqueous Eutectic Electrolyte for Rechargeable Iron Batteries

被引:2
|
作者
Vadthya, Raju [1 ]
Poornabodha, Nikhitha [2 ]
Nguyen, Hao [1 ]
Oladoyin, Olumide [1 ]
Ivanov, Sergei A. [3 ,4 ]
Zhuang, Houlong [2 ]
Wei, Shuya [1 ]
机构
[1] Univ New Mexico, Dept Chem & Biol Engn, Albuquerque, NM 87131 USA
[2] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85281 USA
[3] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
来源
ACS APPLIED ENERGY MATERIALS | 2024年 / 7卷 / 09期
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
eutectic; electrolytes; iron; rechargeablebatteries; V2O5; INFRARED-SPECTRA; V2O5; NANOPARTICLES; XPS;
D O I
10.1021/acsaem.4c00263
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Iron metal has attracted great interest as an anode material for the development of aqueous rechargeable batteries due to its huge abundance in the earth's crust, offering significantly lower cost per cell. However, the intractable side reactions at the negative iron anode and parasitic hydrogen evolution in aqueous media hamper the technology being unattainable for practical evaluations. Herein, we demonstrate a nonaqueous, eutectic electrolyte based on triethylamine hydrochloride ((Et3NH)Cl) and FeCl3 as an efficient electrolyte for the application of rechargeable iron batteries (RIBs). The eutectic formation is achieved by dual intermolecular interactions, namely, Lewis acid-base interactions and hydrogen bonding, resulting in hybrid organic-inorganic active ionic complex species. The optimized eutectic electrolyte offers appreciably high ionic conductivity (similar to 1.2 mS cm(-1)) at room temperature, high plating and stripping efficiency (similar to 100%), a long cycling stability of congruent to 400 h in a symmetric iron cell, and a wide operating potential window (similar to 2.5 V on Mo or carbon-coat Al). Differential scanning calorimetry (DSC) reveals that the electrolyte renders the liquid phase at -11 degrees C. A hydrothermally synthesized V2O5 nanowire cathode paired against an iron anode in the optimized eutectic electrolyte renders a good capacity of similar to 140 mAh g(-1) at a current density of 10 mA g(-1). The charge storage mechanism of the cell is thoroughly investigated by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction on the galvanostatically cycled electrodes. The addition of AlCl3 extends the electrolyte stability window to 3.2 V on SS, resulting in enhanced cell performance that maintains stability for >100 cycles. This work introduces a eutectic electrolyte class that can enable safe RIBs at low-cost and a wide operating potential window.
引用
收藏
页码:3876 / 3887
页数:12
相关论文
共 50 条
  • [21] Electrolyte solutions for anodes in rechargeable lithium batteries
    Matsuda, Y
    Morita, M
    Ishikawa, M
    JOURNAL OF POWER SOURCES, 1997, 68 (01) : 30 - 36
  • [22] Nanocomposite polymer electrolyte for rechargeable magnesium batteries
    Shao, Yuyan
    Rajput, Nay Nidhi
    Hu, Jianzhi
    Hu, Mary
    Liu, Tianbiao
    Wei, Zhehao
    Gu, Meng
    Deng, Xuchu
    Xu, Suochang
    Han, Kee Sung
    Wang, Jiulin
    Nie, Zimin
    Li, Guosheng
    Zavadil, Kevin R.
    Xiao, Jie
    Wang, Chongmin
    Henderson, Wesley A.
    Zhang, Ji-Guang
    Wang, Yong
    Mueller, Karl T.
    Persson, Kristin
    Liu, Jun
    NANO ENERGY, 2015, 12 : 750 - 759
  • [23] Electrolyte Modulation Strategies for Rechargeable Zn Batteries
    Han Ming-Ming
    Huang Ji-Wu
    Wu Xian-Wen
    Liang Shu-Quan
    Zhou Jiang
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (08) : 1451 - 1469
  • [24] Electrolyte solutions for anodes in rechargeable lithium batteries
    Matsuda, Yoshiharu
    Morita, Masayuki
    Ishikawa, Masashi
    Journal of Power Sources, 1997, 68 (1 pt 1): : 30 - 36
  • [25] Improved electrolyte solutions for rechargeable magnesium batteries
    Gofer, Y
    Chusid, O
    Gizbar, H
    Viestfrid, Y
    Gottlieb, HE
    Marks, V
    Aurbach, D
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (05) : A257 - A260
  • [26] Electrolyte design for rechargeable anion shuttle batteries
    Wang, Yao
    Yang, Xu
    Zhang, Zhijia
    Hu, Xia
    Meng, Yuefeng
    Wang, Xia
    Zhou, Dong
    Liu, Hao
    Li, Baohua
    Wang, Guoxiu
    ESCIENCE, 2022, 2 (06): : 573 - 590
  • [27] Development of a biodegradable polymer electrolyte for rechargeable batteries
    Fonseca, CP
    Rosa, DS
    Gaboardi, F
    Neves, S
    JOURNAL OF POWER SOURCES, 2006, 155 (02) : 381 - 384
  • [28] COMPOSITE GEL ELECTROLYTE FOR RECHARGEABLE LITHIUM BATTERIES
    SLANE, S
    SALOMON, M
    JOURNAL OF POWER SOURCES, 1995, 55 (01) : 7 - 10
  • [29] A polymer electrolyte for rechargeable chloride ion batteries
    Wang, Qing
    Liu, Junmeng
    Zhang, Jiahao
    Lou, Xiao-Ming
    Tan, Qian
    Gao, Ping
    MATERIALS LETTERS, 2022, 329
  • [30] Interdigitated Eutectic Alloy Foil Anodes for Rechargeable Batteries
    Kreder, Karl J., III
    Heligman, Brian T.
    Manthiram, Arumugam
    ACS ENERGY LETTERS, 2017, 2 (10): : 2422 - 2423