Prediction of Failure to Progress after Labor Induction: A Multivariable Model Using Pelvic Ultrasound and Clinical Data

被引:0
|
作者
Novillo-Del Alamo, Blanca [1 ]
Martinez-Varea, Alicia [1 ,2 ,3 ,4 ]
Satorres-Perez, Elena [1 ]
Nieto-Tous, Mar [1 ]
Modrego-Pardo, Fernando [1 ]
Padilla-Prieto, Carmen [1 ]
Garcia-Florenciano, Maria Victoria [1 ]
de Velasco, Silvia Bello-Martinez [1 ]
Morales-Rosello, Jose [1 ,2 ]
机构
[1] La Fe Univ & Polytech Hosp, Dept Obstet & Gynecol, Valencia 46026, Spain
[2] Univ Valencia, Fac Med, Dept Pediat Obstet & Gynecol, Valencia 46010, Spain
[3] CEU Cardenal Herrera Univ, Dept Med, Castellon De La Plana 12006, Spain
[4] Univ Int Valencia, Fac Hlth Sci, Valencia 46002, Spain
来源
JOURNAL OF PERSONALIZED MEDICINE | 2024年 / 14卷 / 05期
关键词
labor induction; vaginal delivery; cesarean section; pregnancy; pelvic ultrasound; INTRAPARTUM TRANSLABIAL ULTRASOUND; FETAL FIBRONECTIN; ELECTIVE INDUCTION; SUCCESS; ANGLE; TERM;
D O I
10.3390/jpm14050502
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective: Labor induction is one of the leading causes of obstetric admission. This study aimed to create a simple model for predicting failure to progress after labor induction using pelvic ultrasound and clinical data. Material and Methods: A group of 387 singleton pregnant women at term with unruptured amniotic membranes admitted for labor induction were included in an observational prospective study. Clinical and ultrasonographic variables were collected at admission prior to the onset of contractions, and labor data were collected after delivery. Multivariable logistic regression analysis was applied to create several models to predict cesarean section due to failure to progress. Afterward, the most accurate and reproducible model was selected according to the lowest Akaike Information Criteria (AIC) with a high area under the curve (AUC). Results: Plausible parameters for explaining failure to progress were initially obtained from univariable analysis. With them, several multivariable analyses were evaluated. Those parameters with the highest reproducibility included maternal age (p < 0.05), parity (p < 0.0001), fetal gender (p < 0.05), EFW centile (p < 0.01), cervical length (p < 0.01), and posterior occiput position (p < 0.001), but the angle of descent was disregarded. This model obtained an AIC of 318.3 and an AUC of 0.81 (95% CI 0.76-0.86, p < 0.0001) with detection rates of 24% and 37% for FPRs of 5% and 10%. Conclusions: A simplified clinical and sonographic model may guide the management of pregnancies undergoing labor induction, favoring individualized patient management.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Prediction of left lobe hypertrophy after right lobe radioembolization of the liver using a clinical data model with external validation
    Jens M. Theysohn
    Aydin Demircioglu
    Malte Kleditzsch
    Johannes M. Ludwig
    Manuel Weber
    Lale Umutlu
    Yan Li
    Malte Kircher
    Constantin Lapa
    Andreas Buck
    Michael Koehler
    Moritz Wildgruber
    Christian M. Lange
    Xavier Palard
    Etienne Garin
    Ken Herrmann
    Michael Forsting
    Felix Nensa
    Scientific Reports, 12
  • [32] Developing a multivariable prognostic model for pancreatic endocrine tumors using the clinical data warehouse resources of a single institution
    Botsis, Taxiarchis
    Anagnostou, Valsamo K.
    Hartvigsen, Gunnar
    Hripcsak, George
    Weng, Chunhua
    APPLIED CLINICAL INFORMATICS, 2010, 1 (01): : 38 - 49
  • [33] In vitro model for the prediction of clinical CYP3A4 induction using HepaRG cells
    Kaneko, A.
    Kato, M.
    Sekiguchi, N.
    Mitsui, T.
    Takeda, K.
    Aso, Y.
    XENOBIOTICA, 2009, 39 (11) : 803 - 810
  • [34] Explanatory variables and nomogram of a clinical prediction model to estimate the risk of caesarean section after term induction
    Bademkiran, Muhammed Hanifi
    Bademkiran, Cihan
    Ege, Serhat
    Peker, Nurullah
    Sucu, Seyhun
    Obut, Mehmet
    Demirel, Mehmet Ozgur
    Samanci, Serhat
    Bagli, Ihsan
    Celik, Kiymet
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2021, 41 (03) : 367 - 373
  • [35] Maternal age and body mass index and risk of labor dystocia after spontaneous labor onset among nulliparous women: A clinical prediction model
    Nathan, Nina Olsen
    Bergholt, Thomas
    Sejling, Christoffer
    Ersboll, Anne Schojdt
    Ekelund, Kim
    Gerds, Thomas Alexander
    Gam, Christiane Bourgin Folke
    Rode, Line
    Hegaard, Hanne Kristine
    PLOS ONE, 2024, 19 (09):
  • [36] Prediction of Clinical Conditions after Coronary Bypass Surgery using Dynamic Data Analysis
    K. Van Loon
    F. Guiza
    G. Meyfroidt
    J.-M. Aerts
    J. Ramon
    H. Blockeel
    M. Bruynooghe
    G. Van den Berghe
    D. Berckmans
    Journal of Medical Systems, 2010, 34 : 229 - 239
  • [37] Prediction of cardiovascular events after carotid endarterectomy using pathological images and clinical data
    Ishida, Shuya
    Morita, Kento
    Hatakeyama, Kinta
    Ren, Nice
    Watanabe, Shogo
    Kobashi, Syoji
    Iihara, Koji
    Wakabayashi, Tetsushi
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2024, : 643 - 652
  • [38] Prediction of Clinical Conditions after Coronary Bypass Surgery using Dynamic Data Analysis
    Van Loon, K.
    Guiza, F.
    Meyfroidt, G.
    Aerts, J. -M.
    Ramon, J.
    Blockeel, H.
    Bruynooghe, M.
    Van den Berghe, G.
    Berckmans, D.
    JOURNAL OF MEDICAL SYSTEMS, 2010, 34 (03) : 229 - 239
  • [39] Predicting Performance Status 1 Year After Critical Illness in Patients 80 Years or Older: Development of a Multivariable Clinical Prediction Model
    Heyland, Daren K.
    Stelfox, Henry T.
    Garland, Allan
    Cook, Deborah
    Dodek, Peter
    Kutsogiannis, Jim
    Jiang, Xuran
    Turgeon, Alexis F.
    Day, Andrew G.
    CRITICAL CARE MEDICINE, 2016, 44 (09) : 1718 - 1726
  • [40] Clinical validated risk prediction model for development of heart failure after contemporary breast cancer treatment
    Barac, A.
    Chou, J.
    Shara, N.
    Chen, L.
    Shi, J.
    Chlebowski, R.
    Haque, R.
    Potosky, A.
    EUROPEAN HEART JOURNAL, 2024, 45