Estimation of marginal excess moments for Weibull-type distributions

被引:0
|
作者
Goegebeur, Yuri [1 ]
Guillou, Armelle [2 ,3 ]
Qin, Jing [1 ]
机构
[1] Univ Southern Denmark, Dept Math & Comp Sci, Campusvej 55, DK-5230 Odense M, Denmark
[2] Univ Strasbourg, Inst Rech Math Avancee, UMR 7501, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[3] CNRS, 7 Rue Rene Descartes, F-67084 Strasbourg, France
关键词
Weibull-type distribution; Bivariate extreme value statistics; Tail copula; Empirical process convergence; SIGNIFICANT WAVE HEIGHT; TAIL; TERM;
D O I
10.1007/s10687-024-00494-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the estimation of the marginal excess moment(MEM), which is defined for a random vector(X,Y)and a parameter beta > 0 as E[(X-QX(1-p))(beta)(+)|Y > Q(Y )(1 - p) ] provided E|X|(beta )< infinity, and where y(+ ): = max (0, y), Q(X )and Q(Y )are the quantile functions of X and Y respectively, and p is an element of (0, 1). Our interest is in the situation where the random variable X is of Weibull-type while the distribution of Y is kept general, the extreme dependence structure of(X,Y)converges to that of abivariate extreme value distribution, and we let p down arrow 0 as the sample sizen -> infinity. By using extreme value arguments we introduce an estimator for the marginal excess moment and we derive its limiting distribution. The finite sample properties of the proposed estimator are evaluated with a simulation study and the practical applicability is illustrated on a dataset of wave heights and wind speeds
引用
收藏
页数:41
相关论文
共 50 条
  • [11] ESTIMATION OF PARAMETERS OF A WEIBULL-TYPE NONLINEAR REGRESSION MODEL
    Singh, Trijya
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 49 (06) : 409 - 416
  • [12] Weibull-type speckle distributions as a result of saturation in stimulated scattering processes
    Hueller, S.
    Porzio, A.
    [J]. LASER AND PARTICLE BEAMS, 2015, 33 (04) : 667 - 678
  • [13] Nonparametric estimation of conditional marginal excess moments
    Goegebeur, Yuri
    Guillou, Armelle
    Ho, Nguyen Khanh Le
    Qin, Jing
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 193
  • [14] Kernel regression with Weibull-type tails
    Tertius de Wet
    Yuri Goegebeur
    Armelle Guillou
    Michael Osmann
    [J]. Annals of the Institute of Statistical Mathematics, 2016, 68 : 1135 - 1162
  • [15] DISCRIMINATION, SIGNAL-DETECTION, AND ESTIMATION FOR WEIBULL-TYPE POISSON PROCESSES
    LEE, SM
    BELL, CB
    MASON, AL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (03) : 576 - 580
  • [16] Tail asymptotic of Weibull-type risks
    Hashorva, Enkelejd
    Weng, Zhichao
    [J]. STATISTICS, 2014, 48 (05) : 1155 - 1165
  • [17] Kernel regression with Weibull-type tails
    de Wet, Tertius
    Goegebeur, Yuri
    Guillou, Armelle
    Osmann, Michael
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2016, 68 (05) : 1135 - 1162
  • [18] Weibull-type limiting distribution for replicative systems
    Jo, Junghyo
    Fortin, Jean-Yves
    Choi, M. Y.
    [J]. PHYSICAL REVIEW E, 2011, 83 (03):
  • [19] Weibull-type correlation for the surface tension of common fluids
    Yi, Huili
    Tian, Jianxiang
    Mulero, A.
    Cachadin, I.
    [J]. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 126 (03) : 1603 - 1613
  • [20] EXTREMAL LINEAR QUANTILE REGRESSION WITH WEIBULL-TYPE TAILS
    He, Fengyang
    Wang, Huixia Judy
    Tong, Tiejun
    [J]. STATISTICA SINICA, 2020, 30 (03) : 1357 - 1377