HiCDiff: single-cell Hi-C data denoising with diffusion models

被引:0
|
作者
Wang, Yanli [1 ]
Cheng, Jianlin [1 ]
机构
[1] Univ Missouri, NextGen Precis Hlth Inst, Dept Elect Engn & Comp Sci, Columbia, MO 65211 USA
关键词
single-cell Hi-C; diffusion model; deep learning; Hi-C data denoising; GENOMES;
D O I
10.1093/bib/bbae279
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The genome-wide single-cell chromosome conformation capture technique, i.e. single-cell Hi-C (ScHi-C), was recently developed to interrogate the conformation of the genome of individual cells. However, single-cell Hi-C data are much sparser than bulk Hi-C data of a population of cells, and noise in single-cell Hi-C makes it difficult to apply and analyze them in biological research. Here, we developed the first generative diffusion models (HiCDiff) to denoise single-cell Hi-C data in the form of chromosomal contact matrices. HiCDiff uses a deep residual network to remove the noise in the reverse process of diffusion and can be trained in both unsupervised and supervised learning modes. Benchmarked on several single-cell Hi-C test datasets, the diffusion models substantially remove the noise in single-cell Hi-C data. The unsupervised HiCDiff outperforms most supervised non-diffusion deep learning methods and achieves the performance comparable to the state-of-the-art supervised deep learning method in terms of multiple metrics, demonstrating that diffusion models are a useful approach to denoising single-cell Hi-C data. Moreover, its good performance holds on denoising bulk Hi-C data.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] scHiCEmbed: Bin-Specific Embeddings of Single-Cell Hi-C Data Using Graph Auto-Encoders
    Liu, Tong
    Wang, Zheng
    [J]. GENES, 2022, 13 (06)
  • [42] A minimal Go-model for rebuilding whole genome structures from haploid single-cell Hi-C data
    Wettermann, S.
    Brems, M.
    Siebert, J. T.
    Vu, G. T.
    Stevens, T. J.
    Virnau, P.
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2020, 173
  • [43] Linking genome structures to functions by simultaneous single-cell Hi-C and RNA-seq
    Liu, Zhiyuan
    Chen, Yujie
    Xia, Qimin
    Liu, Menghan
    Xu, Heming
    Chi, Yi
    Deng, Yujing
    Xing, Dong
    [J]. SCIENCE, 2023, 380 (6649) : 1070 - 1076
  • [44] 3D structures of individual mammalian genomes studied by single-cell Hi-C
    Tim J. Stevens
    David Lando
    Srinjan Basu
    Liam P. Atkinson
    Yang Cao
    Steven F. Lee
    Martin Leeb
    Kai J. Wohlfahrt
    Wayne Boucher
    Aoife O’Shaughnessy-Kirwan
    Julie Cramard
    Andre J. Faure
    Meryem Ralser
    Enrique Blanco
    Lluis Morey
    Miriam Sansó
    Matthieu G. S. Palayret
    Ben Lehner
    Luciano Di Croce
    Anton Wutz
    Brian Hendrich
    Dave Klenerman
    Ernest D. Laue
    [J]. Nature, 2017, 544 : 59 - 64
  • [45] 3D structures of individual mammalian genomes studied by single-cell Hi-C
    Stevens, Tim J.
    Lando, David
    Basu, Srinjan
    Atkinson, Liam P.
    Cao, Yang
    Lee, Steven F.
    Leeb, Martin
    Wohlfahrt, Kai J.
    Boucher, Wayne
    O'Shaughnessy-Kirwan, Aoife
    Cramard, Julie
    Faure, Andre J.
    Ralser, Meryem
    Blanco, Enrique
    Morey, Lluis
    Sanso, Miriam
    Palayret, Matthieu G. S.
    Lehner, Ben
    Di Croce, Luciano
    Wutz, Anton
    Hendrich, Brian
    Klenerman, Dave
    Laue, Ernest D.
    [J]. NATURE, 2017, 544 (7648) : 59 - +
  • [46] Si-C is a method for inferring super-resolution intact genome structure from single-cell Hi-C data
    Meng, Luming
    Wang, Chenxi
    Shi, Yi
    Luo, Qiong
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [47] Si-C is a method for inferring super-resolution intact genome structure from single-cell Hi-C data
    Luming Meng
    Chenxi Wang
    Yi Shi
    Qiong Luo
    [J]. Nature Communications, 12
  • [48] High-Resolution Single-Cell Models of Ensemble Chromatin Structures During Drosophila Embryogenesis from Population HI-C
    Sun, Qiu
    [J]. BIOPHYSICAL JOURNAL, 2020, 118 (03) : 63A - 63A
  • [49] Sci-Hi-C: A single-cell Hi-C method for mapping 3D genome organization in large number of single cells
    Ramani, Vijay
    Deng, Xinxian
    Qiu, Ruolan
    Lee, Choli
    Disteche, Christine M.
    Noble, William S.
    Shendure, Jay
    Duan, Zhijun
    [J]. METHODS, 2020, 170 : 61 - 68
  • [50] Model-based imputation enables improved resolution for identifying differential chromatin contacts in single-cell Hi-C data
    Shokraneh, Neda
    Andrews, Megan
    Libbrecht, Maxwell
    [J]. MACHINE LEARNING IN COMPUTATIONAL BIOLOGY, VOL 240, 2023, 240