A review on the direct and inverse transmission eigenvalue problem for the spherically symmetric refractive index

被引:0
|
作者
Pallikarakis, Nikolaos [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
来源
关键词
Transmission eigenvalue; Interior transmission problem; Direct spectral problem; Inverse spectral problem; Spherically symmetric refractive index; Scattering theory; FAR-FIELD PATTERNS; STURM-LIOUVILLE PROBLEM; INHOMOGENEOUS-MEDIA; PARTIAL INFORMATION; ACOUSTIC-WAVES; SCATTERING; UNIQUENESS; DENSENESS; EXISTENCE; EQUATIONS;
D O I
10.1007/s40590-024-00661-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this review article is to explore the interior transmission eigenvalue problem on the unit ball of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>3$$\end{document}. Focusing on the direct and inverse transmission eigenvalue problems for the spherically symmetric refractive index, we present key findings without getting into many technical details. After the formulation of the eigenvalue problem, we outline theorems on existence and distribution of real and complex eigenvalues, asymptotic formulas, and uniqueness results for the inverse problem. Additionally, we provide a concise overview of the current bibliography on transmission eigenvalue problems, concluding with open questions in the spherically symmetric case.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] A computational method for the inverse transmission eigenvalue problem
    Gintides, Drossos
    Pallikarakis, Nikolaos
    [J]. INVERSE PROBLEMS, 2013, 29 (10)
  • [22] Realizability criterion for the symmetric nonnegative inverse eigenvalue problem
    Soto, Ricardo L.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 416 (2-3) : 783 - 794
  • [23] Reconstruction for a class of the inverse transmission eigenvalue problem
    Wang, Yu Ping
    Zhao, Wenju
    Shieh, Chung Tsun
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6660 - 6671
  • [24] An Inverse Eigenvalue Problem for Symmetric Doubly Arrow Matrices
    Xu, Chengfeng
    Liu, Zhibing
    Wang, Kanming
    [J]. 2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, : 629 - 632
  • [25] The inverse eigenvalue problem for symmetric doubly stochastic matrices
    Hwang, SG
    Pyo, SS
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 379 : 77 - 83
  • [26] Symmetric inverse eigenvalue vibration problem and its application
    Starek, L
    Inman, DJ
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2001, 15 (01) : 11 - 29
  • [27] On a regularization approach to the inverse transmission eigenvalue problem
    Buterinl, S. A.
    Choque-Rivero, A. E.
    Kuznetsova, M. A.
    [J]. INVERSE PROBLEMS, 2020, 36 (10)
  • [28] Inverse spectral analysis for the transmission eigenvalue problem
    Wei, Guangsheng
    Xu, Hong-Kun
    [J]. INVERSE PROBLEMS, 2013, 29 (11)
  • [29] A kind of inverse eigenvalue problem for symmetric arrowhead matrices
    Peng, Juan
    Hu, Xiyan
    Zhang, Lei
    [J]. Advances in Matrix Theory and Applications, 2006, : 158 - 160
  • [30] An Iterative Method for the Symmetric Solution of an Inverse Eigenvalue Problem
    Guo, Konghua
    Hu, Xiyan
    Zhang, Lei
    [J]. ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 87 - 90