High-speed silicon photonic electro-optic Kerr modulation

被引:7
|
作者
Peltier, Jonathan [1 ,2 ]
Zhang, Weiwei [3 ]
Virot, Leopold [2 ]
Lafforgue, Christian [1 ]
Deniel, Lucas [1 ]
Marris-morini, Delphine [1 ]
Aubin, Guy [1 ]
Amar, Farah [1 ]
Tran, Denh [3 ]
Yan, Xingzhao [3 ]
Littlejohns, Callum g. [3 ]
Alonso-ramos, Carlos [1 ,3 ]
Li, Ke [3 ]
Thomson, David j. [3 ]
Reed, Graham [3 ]
Vivien, Laurent [1 ]
机构
[1] Univ Paris Saclay, Ctr Nanosci & Nanotechnol C2N, CNRS, Palaiseau 91120, France
[2] Univ Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France
[3] Univ Southampton, Fac Engn & Phys Sci, Optoelect Res Ctr, Zepler Inst Photon & Nanoelect, Southampton SO17 1BJ, England
基金
英国工程与自然科学研究理事会;
关键词
DC-KERR;
D O I
10.1364/PRJ.488867
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Silicon -based electro-optic modulators contribute to easing the integration of high-speed and low -power consumption circuits for classical optical communications and data computations. Beyond the plasma dispersion modulation, an alternative solution in silicon is to exploit the DC Kerr effect, which generates an equivalent linear electro-optical effect enabled by applying a large DC electric field. Although some theoretical and experimental studies have shown its existence in silicon, limited contributions relative to plasma dispersion have been achieved in high-speed modulation so far. This paper presents high-speed optical modulation based on the DC Kerr effect in silicon PIN waveguides. The contributions of both plasma dispersion and Kerr effects have been analyzed in different waveguide configurations, and we demonstrated that the Kerr induced modulation is dominant when a high external DC electric field is applied in PIN waveguides. High-speed optical modulation response is analyzed, and eye diagrams up to 80 Gbit/s in NRZ format are obtained under a d.c. voltage of 30 V. This work paves the way to exploit the Kerr effect to generate high-speed Pockels-like optical modulation.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [41] Resonator Structure Comparison for the Silicon Kerr Electro-Optic Switch
    Simili, Deepak V.
    Cada, Michael
    2016 PHOTONICS NORTH (PN), 2016,
  • [42] Silicon Slot Waveguide Electro-Optic Kerr Effect Modulator
    Simili, Deepak V.
    Cada, Michael
    Pistora, Jaromir
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (09) : 873 - 876
  • [43] High-speed light modulation using complex refractive-index changes of electro-optic polymers
    Harada, K
    Munakata, K
    Itoh, M
    Yatagai, T
    Honda, Y
    Umegaki, S
    APPLIED PHYSICS LETTERS, 2000, 77 (23) : 3683 - 3685
  • [44] Electro-optic dual-comb interferometer for high-speed vibrometry
    Teleanu, Elena L.
    Duran, Vicente
    Torres-Company, Victor
    OPTICS EXPRESS, 2017, 25 (14): : 16427 - 16436
  • [45] A high-speed electro-optic triple-microring resonator modulator
    Jianxun Hong
    Feng Qiu
    Xiaoyang Cheng
    Andrew M. Spring
    Shiyoshi Yokoyama
    Scientific Reports, 7
  • [46] A high-speed electro-optic triple-microring resonator modulator
    Hong, Jianxun
    Qiu, Feng
    Cheng, Xiaoyang
    Spring, Andrew M.
    Yokoyama, Shiyoshi
    SCIENTIFIC REPORTS, 2017, 7
  • [47] A delay-line-free high-speed electro-optic sampler
    Lin, GR
    Chang, YC
    OPTICAL ENGINEERING FOR SENSING AND NANOTECHNOLOGY (ICOSN 2001), 2001, 4416 : 288 - 293
  • [48] A Fano resonance electro-optic modulator with high modulation efficiency in photonic multiplying
    Xu, Yingjie
    Lu, Lidan
    Zhu, Bofei
    Chen, Guang
    Liao, Jie
    Zhang, Jin
    Dong, Mingli
    Zhu, Lianqing
    OPTICS AND LASERS IN ENGINEERING, 2025, 187
  • [49] High-speed 2 × 2 silicon-based electro-optic switch with nanosecond switch time
    徐学俊
    陈少武
    徐海华
    孙阳
    俞育德
    余金中
    王启明
    Chinese Physics B, 2009, 18 (09) : 3900 - 3904
  • [50] High-speed mid-infrared silicon-based electro-optic modulator at 2 μ m
    Wang, Shuxiao
    Tu, Zhijuan
    Liu, Yufei
    Li, Xinyu
    Song, Ruogu
    Li, Zhuoyun
    Yue, Wencheng
    Cai, Yan
    Yu, Mingbin
    OPTICS COMMUNICATIONS, 2024, 565