Normal forms for quasi-elliptic Enriques surfaces and applications

被引:0
|
作者
Katsura, Toshiyuki [1 ]
Schuett, Matthias [2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, Tokyo 1538914, Japan
[2] Leibniz Univ Hannover, Inst Algebra Geometrie, Welfengarten 1, D-30167 Hannover, Germany
[3] Leibniz Univ Hannover, Riemann Ctr Geometry & Phys, Appelstr 2, D-30167 Hannover, Germany
来源
关键词
Enriques surface; quasi-elliptic fi bration; generalized Jacobian; NONCONSERVATIVE FUNCTION-FIELDS; CLASSIFICATION; AUTOMORPHISMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We work out normal forms for quasi -elliptic Enriques surfaces and give several applications. These include torsors and numerically trivial automorphisms, but our main application is the completion of the classi fi cation of Enriques surfaces with fi nite automorphism groups started by Kond & oacute;, Nikulin, Martin and Katsura-Kond & oacute;-Martin.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Enriques surfaces and Jacobian elliptic K3 surfaces
    Hulek, Klaus
    Schuett, Matthias
    MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (3-4) : 1025 - 1056
  • [32] ENRIQUES CLASSIFICATION OF NORMAL GORENSTEIN SURFACES
    SAKAI, F
    AMERICAN JOURNAL OF MATHEMATICS, 1982, 104 (06) : 1233 - 1241
  • [33] DESIGN OF OPTIMIZED SELECTIVE QUASI-ELLIPTIC FILTERS
    Zhu, Y. Z.
    Song, H. S.
    Guan, K.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2009, 23 (10) : 1357 - 1366
  • [34] ON LP ESTIMATES FOR QUASI-ELLIPTIC BOUNDARY PROBLEMS
    ARKERYD, L
    MATHEMATICA SCANDINAVICA, 1969, 24 (01) : 141 - &
  • [35] ON WANDERMOND OPERATOR FOR QUASI-ELLIPTIC OPERATOR PENCILS
    MUSTYATSA, IV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1991, (05): : 56 - 58
  • [36] ON SMOOTHNESS OF SOLUTIONS FOR A CLASS OF QUASI-ELLIPTIC EQUATIONS
    GUSEINOV, RV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1992, (06): : 10 - 14
  • [37] Quasi-elliptic cohomology and its power operations
    Zhen Huan
    Journal of Homotopy and Related Structures, 2018, 13 : 715 - 767
  • [38] On solvability of a quasi-elliptic partial differential equations
    Najafov, Alik M.
    Rustamova, Nilufer R.
    Alekberli, Sain T.
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2019, 5 (01) : 175 - 187
  • [39] Quasi-Elliptic Lossy Filter With Reconfigurable Bandwidth
    Rao, Jiayu
    Guo, Hongliang
    Ni, Jia
    Hong, Jiasheng
    IEEE MICROWAVE AND WIRELESS TECHNOLOGY LETTERS, 2023, 33 (09): : 1282 - 1285
  • [40] Quasi-elliptic integrals and periodic continued fractions
    van der Poorten, AJ
    Tran, XC
    MONATSHEFTE FUR MATHEMATIK, 2000, 131 (02): : 155 - 169