An iterative Tikhonov regularization downward continuation of magnetic anomaly

被引:1
|
作者
Li, Houpu [1 ]
Zhao, Bairu [2 ,3 ]
Zhang, Henglei [2 ,3 ]
机构
[1] Naval Univ Engn, Sch Elect Engn, Wuhan 430000, Peoples R China
[2] Univ Geosci, Key Lab Geol Survey & Evaluat, Minist Educ, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Sch Geophys & Geomat, Wuhan 430074, Peoples R China
基金
美国国家科学基金会;
关键词
Downward continuation; Magnetic anomaly; Tikhonov regularization; POTENTIAL-FIELD DATA; PARAMETER;
D O I
10.1016/j.jappgeo.2024.105354
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The Tikhonov regularization downward continuation (TRDC) is one of the most robust methods to enhance magnetic anomalies, where the determination of an optimum value of the regularization parameter is a crucial task. In this study, we propose an iterative Tikhonov regularization downward continuation (ITRDC) strategy to downward continue magnetic anomalies with no sensitives to the regularization parameter, which is beneficial for accurate downward continuation. We show that using some arbitrary values for the regularization parameter in the proposed ITRDC method, the expected downward continued field can be obtained by a series of iterations. Based on synthetic and field data examples using a large continuation distance of 40 times of the data spacing, we show that the proposed method is more accurate and stable than the standard TRDC.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Approximate iterative operator method for potential-field downward continuation
    Tai, Zhenhua
    Zhang, Fengxu
    Zhang, Fengqin
    Hao, Mengcheng
    JOURNAL OF APPLIED GEOPHYSICS, 2016, 128 : 31 - 40
  • [42] Regularization-integral iteration in wavenumber domain for downward continuation of potential fields
    Zeng, Xiaoniu
    Li, Xihai
    Niu, Chao
    Liu, Daizhi
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2013, 48 (04): : 643 - 650
  • [43] On a continuation approach in Tikhonov regularization and its application in piecewise-constant parameter identification
    Melicher, V.
    Vrabel', V.
    INVERSE PROBLEMS, 2013, 29 (11)
  • [44] A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data
    Xu X.
    Zhao J.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2020, 45 (07): : 956 - 963and973
  • [45] Optimal regularization parameter determination method in downward continuation of gravimetric and geomagnetic data
    Liu, Xiaogang (liuxiaogang_1949@163.com), 1600, SinoMaps Press (43):
  • [46] A fractional Landweber iterative regularization method for stable analytic continuation
    Yang, Fan
    Wang, Qianchao
    Li, Xiaoxiao
    AIMS MATHEMATICS, 2021, 6 (01): : 404 - 419
  • [47] An Improved Iterative Tikhonov Regularization Method for Solving the Dynamic Load Identification Problem
    Wang, Linjun
    Cao, Huiping
    Xie, Youxiang
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2015, 16 (05): : 292 - 300
  • [48] Iterative Tikhonov regularization inversion for dual-laterolog in horizontally stratified media
    Yao Dong-Hua
    Wang Hong-Nian
    Tao Hong-Gen
    Yang Shou-Wen
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2010, 53 (09): : 2227 - 2236
  • [49] THE DOWNWARD CONTINUATION OF MAGSAT CRUSTAL ANOMALY FIELD OVER SOUTHEAST-ASIA
    ACHACHE, J
    ABTOUT, A
    LEMOUEL, JL
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1987, 92 (B11): : 11584 - 11596
  • [50] A REGULARIZATION PARAMETER FOR NONSMOOTH TIKHONOV REGULARIZATION
    Ito, Kazufumi
    Jin, Bangti
    Takeuchi, Tomoya
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (03): : 1415 - 1438