Experimental and numerical study on flexural performance of ultra-high performance concrete frame beams reinforced with steel-FRP composite bars

被引:0
|
作者
Zhang, Zhiwen [1 ,2 ]
Ashour, Ashraf [3 ]
Ge, Wenjie [1 ,2 ]
Sushant, Subedi [1 ]
Yao, Shan [4 ]
Luo, Laiyong [5 ]
Cao, Dafu [1 ]
Li, Shengcai [1 ,2 ]
机构
[1] Yangzhou Univ, Coll Civil Sci & Engn, Yangzhou 225127, Peoples R China
[2] Yangzhou Univ, Inst Engn Struct & Disaster Prevent & Mitigat, Yangzhou 225127, Peoples R China
[3] Univ Bradford, Fac Engn & Informat, Bradford BD71DP, England
[4] Gansu Engn Design Res Inst Co Ltd, Lanzhou 730030, Peoples R China
[5] Jiangsu Yangjian Grp Co Ltd, Yangzhou 225002, Peoples R China
关键词
SFCB-UHPC frame beam; Flexural performance; Flexural test; Finite element method; Parametric study; BEHAVIOR;
D O I
10.1016/j.engstruct.2024.119012
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents the bending tests of four ultra-high performance concrete (UHPC) frame beams and one normal strength concrete (NSC) frame beam, all reinforced with steel-FRP composite bars (SFCBs). A comprehensive analysis was carried out, encompassing evaluation of the failure mode, crack propagation, bearing capacity, deformation, strain response, and plastic rotational capacity of the frame beams. Investigating the effects of concrete type, reinforcement type, and beam-end reinforcement ratio on the flexural performance of the frame beams was a key aspect of this study. A three-dimensional finite element (FE) model of the frame beam was established and rigorously verified. The developed model enabled a detailed parametric analysis involving the steel ratio, the yield strength of the inner core steel bar, the elastic modulus of the FRP, and the ultimate tensile strength of the SFCB. The results indicated a consistent failure mode of all frame beams: crushing of concrete at the beam-end, initiating a sequence of plastic hinge occurrence starting at the beam-end and then progressing to mid-span. The substitution of normal strength concrete with UHPC significantly enhanced various aspects of the frame beams, including the flexural capacity, deformation, ductility, ultimate energy dissipation, and plastic rotational capacity, while inhibiting the generation and expansion of cracks. Notably, the plastic rotation angle of SFCB-UHPC frame beams was 4.9 times greater than those of steel-UHPC frame beams, emphasizing the effectiveness of SFCB in enhancing the beam-end plastic rotational capacity. A decrease in the beam-end reinforcement ratio significantly reduced the flexural capacity, ultimate energy dissipation, and beam-end plastic rotational capacity, while improving ductility. Additionally, the study established a formula for calculating the equivalent plastic hinge length, utilizing the relative compressive zone height and effective section height of the beam-end controlling section as variables, which demonstrated good alignment between predicted and experimental results.
引用
收藏
页数:20
相关论文
共 50 条
  • [11] Axial-flexural performance of columns reinforced by steel-FRP composite bars and FRP ties
    Han, Shiwen
    Zhou, Ao
    Fan, Chao
    Xiao, Gang
    Ou, Jinping
    COMPOSITE STRUCTURES, 2023, 322
  • [12] Flexural behavior of hybrid concrete beams reinforced with ultra-high performance concrete bars
    Azad, Abul K.
    Hakeem, Ibrahim Y.
    CONSTRUCTION AND BUILDING MATERIALS, 2013, 49 : 128 - 133
  • [13] Comparative study on flexural performance of ultra-high performance concrete beams reinforced with steel rebar and steel plate
    Yan, Banfu
    Chen, Qiuyan
    Qiu, Minghong
    Zhu, Yanping
    Tu, Bing
    Shao, Xudong
    STRUCTURAL CONCRETE, 2024, 25 (04) : 2536 - 2552
  • [14] Flexural behavior of UHPCbeam reinforced with steel-FRP composite bars
    Abbas, Ebrahim M. A.
    Ge, Yue
    Zhang, Zhiwen
    Chen, Yiwen
    Ashour, Ashraf
    Ge, Wenjie
    Tang, Rong
    Yang, Zhongping
    Khailah, Ebrahim Y.
    Yao, Shan
    Sun, Chuanzhi
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 16
  • [15] Experimental study on the seismic behavior of seawater sea sand concrete beams reinforced with steel-FRP composite bars
    Su, Chang
    Wang, Xin
    Ding, Lining
    Chen, Zhiyuan
    Liu, Shui
    Wu, Zhishen
    ENGINEERING STRUCTURES, 2021, 248
  • [16] Relationships between interfacial behavior and flexural performance of hybrid steel-FRP composite bars reinforced seawater sea-sand concrete beams
    Han, Shiwen
    Zhou, Ao
    Ou, Jinping
    COMPOSITE STRUCTURES, 2021, 277
  • [17] Calculation method of flexural capacity of ultra-high performance concrete beams reinforced with FRP rebars
    Xue, Wenyuan
    Hu, Xiang
    Xue, Weichen
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2022, 39 (11): : 5109 - 5121
  • [18] Experimental study on flexural behaviors of FRP and steel bars hybrid reinforced concrete beams
    Wei, Bingyan
    He, Xiongjun
    Zhou, Ming
    Wang, Huayi
    He, Jia
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 20
  • [19] Flexural capacity of steel reinforced ultra-high performance concrete beams with rectangular section
    Lin, Shang-Shun
    Ji, Bang-Chong
    Liu, Jun-Ping
    Lin, lian-Fan
    Zhao, Jin-Bing
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2024, 24 (03): : 94 - 109
  • [20] Flexural performance of FRP-reinforced concrete encased steel composite beams
    Kara, Ilker Fatih
    STRUCTURAL ENGINEERING AND MECHANICS, 2016, 59 (04) : 775 - 793